Spaces:
Sleeping
Sleeping
ksvmuralidhar
commited on
Commit
•
32ded02
1
Parent(s):
27dff41
Update api.py
Browse files
api.py
CHANGED
@@ -1,185 +1,186 @@
|
|
1 |
-
import cloudpickle
|
2 |
-
import os
|
3 |
-
import tensorflow as tf
|
4 |
-
from scraper import scrape_text
|
5 |
-
from fastapi import FastAPI, Response, Request
|
6 |
-
from typing import List, Dict
|
7 |
-
from pydantic import BaseModel, Field
|
8 |
-
from fastapi.exceptions import RequestValidationError
|
9 |
-
import uvicorn
|
10 |
-
import json
|
11 |
-
import logging
|
12 |
-
import multiprocessing
|
13 |
-
from news_classifier import predict_news_classes
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
os.environ["
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
pool.
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
"
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
"
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
- **
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
request_json = json
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
|
|
|
1 |
+
import cloudpickle
|
2 |
+
import os
|
3 |
+
import tensorflow as tf
|
4 |
+
from scraper import scrape_text
|
5 |
+
from fastapi import FastAPI, Response, Request
|
6 |
+
from typing import List, Dict
|
7 |
+
from pydantic import BaseModel, Field
|
8 |
+
from fastapi.exceptions import RequestValidationError
|
9 |
+
import uvicorn
|
10 |
+
import json
|
11 |
+
import logging
|
12 |
+
import multiprocessing
|
13 |
+
from news_classifier import predict_news_classes
|
14 |
+
from config import SCRAPER_MAX_RETRIES
|
15 |
+
|
16 |
+
|
17 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
18 |
+
os.environ["TF_USE_LEGACY_KERAS"] = "1"
|
19 |
+
|
20 |
+
|
21 |
+
def load_model():
|
22 |
+
logging.warning('Entering load transformer')
|
23 |
+
with open("classification_models/label_encoder.bin", "rb") as model_file_obj:
|
24 |
+
label_encoder = cloudpickle.load(model_file_obj)
|
25 |
+
|
26 |
+
with open("classification_models/calibrated_model.bin", "rb") as model_file_obj:
|
27 |
+
calibrated_model = cloudpickle.load(model_file_obj)
|
28 |
+
|
29 |
+
tflite_model_path = os.path.join("classification_models", "model.tflite")
|
30 |
+
calibrated_model.estimator.tflite_model_path = tflite_model_path
|
31 |
+
logging.warning('Exiting load transformer')
|
32 |
+
return calibrated_model, label_encoder
|
33 |
+
|
34 |
+
|
35 |
+
async def scrape_urls(urls):
|
36 |
+
logging.warning('Entering scrape_urls()')
|
37 |
+
pool = multiprocessing.Pool(processes=multiprocessing.cpu_count())
|
38 |
+
|
39 |
+
results = []
|
40 |
+
for url in urls:
|
41 |
+
f = pool.apply_async(scrape_text, [url, SCRAPER_MAX_RETRIES]) # asynchronously scraping text
|
42 |
+
results.append(f) # appending result to results
|
43 |
+
|
44 |
+
scraped_texts = []
|
45 |
+
scrape_errors = []
|
46 |
+
for f in results:
|
47 |
+
t, e = f.get(timeout=120)
|
48 |
+
scraped_texts.append(t)
|
49 |
+
scrape_errors.append(e)
|
50 |
+
pool.close()
|
51 |
+
pool.join()
|
52 |
+
logging.warning('Exiting scrape_urls()')
|
53 |
+
return scraped_texts, scrape_errors
|
54 |
+
|
55 |
+
|
56 |
+
description = '''API to classify news articles into categories from their URLs.\n
|
57 |
+
Categories = ASTROLOGY, BUSINESS, EDUCATION, ENTERTAINMENT, HEALTH, NATION, SCIENCE, SPORTS, TECHNOLOGY, WEATHER, WORLD'''
|
58 |
+
app = FastAPI(title='News Classifier API',
|
59 |
+
description=description,
|
60 |
+
version="0.0.1",
|
61 |
+
contact={
|
62 |
+
"name": "Author: KSV Muralidhar",
|
63 |
+
"url": "https://ksvmuralidhar.in"
|
64 |
+
},
|
65 |
+
license_info={
|
66 |
+
"name": "License: MIT",
|
67 |
+
"identifier": "MIT"
|
68 |
+
},
|
69 |
+
swagger_ui_parameters={"defaultModelsExpandDepth": -1})
|
70 |
+
|
71 |
+
|
72 |
+
class URLList(BaseModel):
|
73 |
+
urls: List[str] = Field(..., description="List of URLs of news articles to classify")
|
74 |
+
key: str = Field(..., description="Authentication Key")
|
75 |
+
|
76 |
+
class Categories(BaseModel):
|
77 |
+
label: str = Field(..., description="category label")
|
78 |
+
calibrated_prediction_proba: float = Field(...,
|
79 |
+
description="calibrated prediction probability (confidence)")
|
80 |
+
|
81 |
+
class SuccessfulResponse(BaseModel):
|
82 |
+
urls: List[str] = Field(..., description="List of URLs of news articles inputted by the user")
|
83 |
+
scraped_texts: List[str] = Field(..., description="List of scraped text from input URLs")
|
84 |
+
scrape_errors: List[str] = Field(..., description="List of errors raised during scraping. One item for corresponding URL")
|
85 |
+
category: Categories = Field(..., description="Dict of category label of news articles along with calibrated prediction_proba")
|
86 |
+
classifier_error: str = Field("", description="Empty string as the response code is 200")
|
87 |
+
|
88 |
+
class AuthenticationError(BaseModel):
|
89 |
+
urls: List[str] = Field(..., description="List of URLs of news articles inputted by the user")
|
90 |
+
scraped_texts: str = Field("", description="Empty string as authentication failed")
|
91 |
+
scrape_errors: str = Field("", description="Empty string as authentication failed")
|
92 |
+
category: str = Field("", description="Empty string as authentication failed")
|
93 |
+
classifier_error: str = Field("Error: Authentication error: Invalid API key.")
|
94 |
+
|
95 |
+
class ClassifierError(BaseModel):
|
96 |
+
urls: List[str] = Field(..., description="List of URLs of news articles inputted by the user")
|
97 |
+
scraped_texts: List[str] = Field(..., description="List of scraped text from input URLs")
|
98 |
+
scrape_errors: List[str] = Field(..., description="List of errors raised during scraping. One item for corresponding URL")
|
99 |
+
category: str = Field("", description="Empty string as classifier encountered an error")
|
100 |
+
classifier_error: str = Field("Error: Classifier Error with a message describing the error")
|
101 |
+
|
102 |
+
class InputValidationError(BaseModel):
|
103 |
+
urls: List[str] = Field(..., description="List of URLs of news articles inputted by the user")
|
104 |
+
scraped_texts: str = Field("", description="Empty string as validation failed")
|
105 |
+
scrape_errors: str = Field("", description="Empty string as validation failed")
|
106 |
+
category: str = Field("", description="Empty string as validation failed")
|
107 |
+
classifier_error: str = Field("Validation Error with a message describing the error")
|
108 |
+
|
109 |
+
|
110 |
+
class NewsClassifierAPIAuthenticationError(Exception):
|
111 |
+
pass
|
112 |
+
|
113 |
+
class NewsClassifierAPIScrapingError(Exception):
|
114 |
+
pass
|
115 |
+
|
116 |
+
|
117 |
+
def authenticate_key(api_key: str):
|
118 |
+
if api_key != os.getenv('API_KEY'):
|
119 |
+
raise NewsClassifierAPIAuthenticationError("Authentication error: Invalid API key.")
|
120 |
+
|
121 |
+
|
122 |
+
@app.exception_handler(RequestValidationError)
|
123 |
+
async def validation_exception_handler(request: Request, exc: RequestValidationError):
|
124 |
+
urls = request.query_params.getlist("urls")
|
125 |
+
error_details = exc.errors()
|
126 |
+
error_messages = []
|
127 |
+
for error in error_details:
|
128 |
+
loc = [*map(str, error['loc'])][-1]
|
129 |
+
msg = error['msg']
|
130 |
+
error_messages.append(f"{loc}: {msg}")
|
131 |
+
error_message = "; ".join(error_messages) if error_messages else ""
|
132 |
+
response_json = {'urls': urls, 'scraped_texts': '', 'scrape_errors': '', 'categories': "", 'classifier_error': f'Validation Error: {error_message}'}
|
133 |
+
json_str = json.dumps(response_json, indent=5) # convert dict to JSON str
|
134 |
+
return Response(content=json_str, media_type='application/json', status_code=422)
|
135 |
+
|
136 |
+
|
137 |
+
calibrated_model, label_encoder = load_model()
|
138 |
+
|
139 |
+
@app.post("/classify/", tags=["Classify"], response_model=List[SuccessfulResponse],
|
140 |
+
responses={
|
141 |
+
401: {"model": AuthenticationError, "description": "Authentication Error: Returned when the entered API key is incorrect"},
|
142 |
+
500: {"model": ClassifierError, "description": "Classifier Error: Returned when the API couldn't classify even a single article"},
|
143 |
+
422: {"model": InputValidationError, "description": "Validation Error: Returned when the payload data doesn't satisfy the data type requirements"}
|
144 |
+
})
|
145 |
+
async def classify(q: URLList):
|
146 |
+
"""
|
147 |
+
Get categories of news articles by passing the list of URLs as input.
|
148 |
+
- **urls**: List of URLs (required)
|
149 |
+
- **key**: Authentication key (required)
|
150 |
+
"""
|
151 |
+
try:
|
152 |
+
logging.warning("Entering classify()")
|
153 |
+
urls = ""
|
154 |
+
scraped_texts = ""
|
155 |
+
scrape_errors = ""
|
156 |
+
labels = ""
|
157 |
+
probs = 0
|
158 |
+
request_json = q.json()
|
159 |
+
request_json = json.loads(request_json)
|
160 |
+
urls = request_json['urls']
|
161 |
+
api_key = request_json['key']
|
162 |
+
_ = authenticate_key(api_key)
|
163 |
+
scraped_texts, scrape_errors = await scrape_urls(urls)
|
164 |
+
|
165 |
+
unique_scraped_texts = [*set(scraped_texts)]
|
166 |
+
if (unique_scraped_texts[0] == "") and (len(unique_scraped_texts) == 1):
|
167 |
+
raise NewsClassifierAPIScrapingError("Scrape Error: Couldn't scrape text from any of the URLs")
|
168 |
+
|
169 |
+
labels, probs = await predict_news_classes(urls, scraped_texts, calibrated_model, label_encoder)
|
170 |
+
label_prob = [{"label": "", "calibrated_prediction_proba": 0}
|
171 |
+
if t == "" else {"label": l, "calibrated_prediction_proba": p}
|
172 |
+
for l, p, t in zip(labels, probs, scraped_texts)]
|
173 |
+
status_code = 200
|
174 |
+
response_json = {'urls': urls, 'scraped_texts': scraped_texts, 'scrape_errors': scrape_errors, 'categories': label_prob, 'classifer_error': ''}
|
175 |
+
except Exception as e:
|
176 |
+
status_code = 500
|
177 |
+
if e.__class__.__name__ == "NewsClassifierAPIAuthenticationError":
|
178 |
+
status_code = 401
|
179 |
+
response_json = {'urls': urls, 'scraped_texts': scraped_texts, 'scrape_errors': scrape_errors, 'categories': "", 'classifier_error': f'Error: {e}'}
|
180 |
+
|
181 |
+
json_str = json.dumps(response_json, indent=5) # convert dict to JSON str
|
182 |
+
return Response(content=json_str, media_type='application/json', status_code=status_code)
|
183 |
+
|
184 |
+
|
185 |
+
if __name__ == '__main__':
|
186 |
+
uvicorn.run(app=app, host='0.0.0.0', port=7860, workers=3)
|