Spaces:
Sleeping
Sleeping
ksvmuralidhar
commited on
Upload 10 files
Browse files- Dockerfile +58 -0
- api.py +185 -0
- calibrated_classifier.py +85 -0
- classification_models/calibrated_model.bin +3 -0
- classification_models/label_encoder.bin +3 -0
- classification_models/model.tflite +3 -0
- config.py +2 -0
- news_classifier.py +56 -0
- requirements.txt +12 -0
- scraper.py +71 -0
Dockerfile
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.10-slim
|
2 |
+
WORKDIR /code
|
3 |
+
COPY ./requirements.txt /code/requirements.txt
|
4 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
5 |
+
RUN apt update && apt install -y ffmpeg
|
6 |
+
RUN apt -y install wget
|
7 |
+
RUN apt -y install unzip
|
8 |
+
|
9 |
+
RUN apt-get install -y \
|
10 |
+
gnupg \
|
11 |
+
ca-certificates \
|
12 |
+
libglib2.0-0 \
|
13 |
+
libsm6 \
|
14 |
+
libxext6 \
|
15 |
+
libxrender-dev \
|
16 |
+
libfontconfig1 \
|
17 |
+
libnss3 \
|
18 |
+
libatk-bridge2.0-0 \
|
19 |
+
libatk1.0-0 \
|
20 |
+
libatspi2.0-0 \
|
21 |
+
libcups2 \
|
22 |
+
libcurl4 \
|
23 |
+
libgtk-3-0 \
|
24 |
+
libnspr4 \
|
25 |
+
libxcomposite1 \
|
26 |
+
libxdamage1 \
|
27 |
+
xdg-utils \
|
28 |
+
fonts-liberation \
|
29 |
+
libu2f-udev \
|
30 |
+
&& rm -rf /var/lib/apt/lists/*
|
31 |
+
|
32 |
+
RUN wget https://dl.google.com/linux/direct/google-chrome-stable_current_amd64.deb && \
|
33 |
+
dpkg -i google-chrome-stable_current_amd64.deb && \
|
34 |
+
apt-get -f install -y && \
|
35 |
+
rm google-chrome-stable_current_amd64.deb
|
36 |
+
|
37 |
+
RUN useradd -m -u 1000 user
|
38 |
+
USER user
|
39 |
+
ENV HOME=/home/user \
|
40 |
+
PATH=/home/user/.local/bin:$PATH \
|
41 |
+
CHROMEDRIVERURL=https://storage.googleapis.com/chrome-for-testing-public/127.0.6533.119/linux64/chromedriver-linux64.zip \
|
42 |
+
CHROMEDRIVERFILENAME=chromedriver-linux64.zip
|
43 |
+
|
44 |
+
|
45 |
+
WORKDIR $HOME/app
|
46 |
+
|
47 |
+
COPY --chown=user . $HOME/app
|
48 |
+
|
49 |
+
RUN wget -P $HOME/app $CHROMEDRIVERURL
|
50 |
+
RUN unzip $HOME/app/$CHROMEDRIVERFILENAME
|
51 |
+
RUN rm $HOME/app/$CHROMEDRIVERFILENAME
|
52 |
+
|
53 |
+
RUN chmod +x $HOME/app/chromedriver-linux64/chromedriver
|
54 |
+
|
55 |
+
RUN ls -ltr
|
56 |
+
|
57 |
+
EXPOSE 7860
|
58 |
+
ENTRYPOINT ["uvicorn", "api:app", "--host", "0.0.0.0", "--port", "7860", "--workers", "3"]
|
api.py
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cloudpickle
|
2 |
+
import os
|
3 |
+
import tensorflow as tf
|
4 |
+
from scraper import scrape_text
|
5 |
+
from fastapi import FastAPI, Response, Request
|
6 |
+
from typing import List, Dict
|
7 |
+
from pydantic import BaseModel, Field
|
8 |
+
from fastapi.exceptions import RequestValidationError
|
9 |
+
import uvicorn
|
10 |
+
import json
|
11 |
+
import logging
|
12 |
+
import multiprocessing
|
13 |
+
from news_classifier import predict_news_classes
|
14 |
+
|
15 |
+
|
16 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
17 |
+
os.environ["TF_USE_LEGACY_KERAS"] = "1"
|
18 |
+
|
19 |
+
|
20 |
+
def load_model():
|
21 |
+
logging.warning('Entering load transformer')
|
22 |
+
with open("classification_models/label_encoder.bin", "rb") as model_file_obj:
|
23 |
+
label_encoder = cloudpickle.load(model_file_obj)
|
24 |
+
|
25 |
+
with open("classification_models/calibrated_model.bin", "rb") as model_file_obj:
|
26 |
+
calibrated_model = cloudpickle.load(model_file_obj)
|
27 |
+
|
28 |
+
tflite_model_path = os.path.join("classification_models", "model.tflite")
|
29 |
+
calibrated_model.estimator.tflite_model_path = tflite_model_path
|
30 |
+
logging.warning('Exiting load transformer')
|
31 |
+
return calibrated_model, label_encoder
|
32 |
+
|
33 |
+
|
34 |
+
async def scrape_urls(urls):
|
35 |
+
logging.warning('Entering scrape_urls()')
|
36 |
+
pool = multiprocessing.Pool(processes=multiprocessing.cpu_count())
|
37 |
+
|
38 |
+
results = []
|
39 |
+
for url in urls:
|
40 |
+
f = pool.apply_async(scrape_text, [url]) # asynchronously scraping text
|
41 |
+
results.append(f) # appending result to results
|
42 |
+
|
43 |
+
scraped_texts = []
|
44 |
+
scrape_errors = []
|
45 |
+
for f in results:
|
46 |
+
t, e = f.get(timeout=120)
|
47 |
+
scraped_texts.append(t)
|
48 |
+
scrape_errors.append(e)
|
49 |
+
pool.close()
|
50 |
+
pool.join()
|
51 |
+
logging.warning('Exiting scrape_urls()')
|
52 |
+
return scraped_texts, scrape_errors
|
53 |
+
|
54 |
+
|
55 |
+
description = '''API to classify news articles into categories from their URLs.\n
|
56 |
+
Categories = ASTROLOGY, BUSINESS, EDUCATION, ENTERTAINMENT, HEALTH, NATION, SCIENCE, SPORTS, TECHNOLOGY, WEATHER, WORLD'''
|
57 |
+
app = FastAPI(title='News Classifier API',
|
58 |
+
description=description,
|
59 |
+
version="0.0.1",
|
60 |
+
contact={
|
61 |
+
"name": "Author: KSV Muralidhar",
|
62 |
+
"url": "https://ksvmuralidhar.in"
|
63 |
+
},
|
64 |
+
license_info={
|
65 |
+
"name": "License: MIT",
|
66 |
+
"identifier": "MIT"
|
67 |
+
},
|
68 |
+
swagger_ui_parameters={"defaultModelsExpandDepth": -1})
|
69 |
+
|
70 |
+
|
71 |
+
class URLList(BaseModel):
|
72 |
+
urls: List[str] = Field(..., description="List of URLs of news articles to classify")
|
73 |
+
key: str = Field(..., description="Authentication Key")
|
74 |
+
|
75 |
+
class Categories(BaseModel):
|
76 |
+
label: str = Field(..., description="category label")
|
77 |
+
calibrated_prediction_proba: float = Field(...,
|
78 |
+
description="calibrated prediction probability (confidence)")
|
79 |
+
|
80 |
+
class SuccessfulResponse(BaseModel):
|
81 |
+
urls: List[str] = Field(..., description="List of URLs of news articles inputted by the user")
|
82 |
+
scraped_texts: List[str] = Field(..., description="List of scraped text from input URLs")
|
83 |
+
scrape_errors: List[str] = Field(..., description="List of errors raised during scraping. One item for corresponding URL")
|
84 |
+
category: Categories = Field(..., description="Dict of category label of news articles along with calibrated prediction_proba")
|
85 |
+
classifier_error: str = Field("", description="Empty string as the response code is 200")
|
86 |
+
|
87 |
+
class AuthenticationError(BaseModel):
|
88 |
+
urls: List[str] = Field(..., description="List of URLs of news articles inputted by the user")
|
89 |
+
scraped_texts: str = Field("", description="Empty string as authentication failed")
|
90 |
+
scrape_errors: str = Field("", description="Empty string as authentication failed")
|
91 |
+
category: str = Field("", description="Empty string as authentication failed")
|
92 |
+
classifier_error: str = Field("Error: Authentication error: Invalid API key.")
|
93 |
+
|
94 |
+
class ClassifierError(BaseModel):
|
95 |
+
urls: List[str] = Field(..., description="List of URLs of news articles inputted by the user")
|
96 |
+
scraped_texts: List[str] = Field(..., description="List of scraped text from input URLs")
|
97 |
+
scrape_errors: List[str] = Field(..., description="List of errors raised during scraping. One item for corresponding URL")
|
98 |
+
category: str = Field("", description="Empty string as classifier encountered an error")
|
99 |
+
classifier_error: str = Field("Error: Classifier Error with a message describing the error")
|
100 |
+
|
101 |
+
class InputValidationError(BaseModel):
|
102 |
+
urls: List[str] = Field(..., description="List of URLs of news articles inputted by the user")
|
103 |
+
scraped_texts: str = Field("", description="Empty string as validation failed")
|
104 |
+
scrape_errors: str = Field("", description="Empty string as validation failed")
|
105 |
+
category: str = Field("", description="Empty string as validation failed")
|
106 |
+
classifier_error: str = Field("Validation Error with a message describing the error")
|
107 |
+
|
108 |
+
|
109 |
+
class NewsClassifierAPIAuthenticationError(Exception):
|
110 |
+
pass
|
111 |
+
|
112 |
+
class NewsClassifierAPIScrapingError(Exception):
|
113 |
+
pass
|
114 |
+
|
115 |
+
|
116 |
+
def authenticate_key(api_key: str):
|
117 |
+
if api_key != os.getenv('API_KEY'):
|
118 |
+
raise NewsClassifierAPIAuthenticationError("Authentication error: Invalid API key.")
|
119 |
+
|
120 |
+
|
121 |
+
@app.exception_handler(RequestValidationError)
|
122 |
+
async def validation_exception_handler(request: Request, exc: RequestValidationError):
|
123 |
+
urls = request.query_params.getlist("urls")
|
124 |
+
error_details = exc.errors()
|
125 |
+
error_messages = []
|
126 |
+
for error in error_details:
|
127 |
+
loc = [*map(str, error['loc'])][-1]
|
128 |
+
msg = error['msg']
|
129 |
+
error_messages.append(f"{loc}: {msg}")
|
130 |
+
error_message = "; ".join(error_messages) if error_messages else ""
|
131 |
+
response_json = {'urls': urls, 'scraped_texts': '', 'scrape_errors': '', 'categories': "", 'classifier_error': f'Validation Error: {error_message}'}
|
132 |
+
json_str = json.dumps(response_json, indent=5) # convert dict to JSON str
|
133 |
+
return Response(content=json_str, media_type='application/json', status_code=422)
|
134 |
+
|
135 |
+
|
136 |
+
calibrated_model, label_encoder = load_model()
|
137 |
+
|
138 |
+
@app.post("/classify/", tags=["Classify"], response_model=List[SuccessfulResponse],
|
139 |
+
responses={
|
140 |
+
401: {"model": AuthenticationError, "description": "Authentication Error: Returned when the entered API key is incorrect"},
|
141 |
+
500: {"model": ClassifierError, "description": "Classifier Error: Returned when the API couldn't classify even a single article"},
|
142 |
+
422: {"model": InputValidationError, "description": "Validation Error: Returned when the payload data doesn't satisfy the data type requirements"}
|
143 |
+
})
|
144 |
+
async def classify(q: URLList):
|
145 |
+
"""
|
146 |
+
Get categories of news articles by passing the list of URLs as input.
|
147 |
+
- **urls**: List of URLs (required)
|
148 |
+
- **key**: Authentication key (required)
|
149 |
+
"""
|
150 |
+
try:
|
151 |
+
logging.warning("Entering classify()")
|
152 |
+
urls = ""
|
153 |
+
scraped_texts = ""
|
154 |
+
scrape_errors = ""
|
155 |
+
labels = ""
|
156 |
+
probs = 0
|
157 |
+
request_json = q.json()
|
158 |
+
request_json = json.loads(request_json)
|
159 |
+
urls = request_json['urls']
|
160 |
+
api_key = request_json['key']
|
161 |
+
_ = authenticate_key(api_key)
|
162 |
+
scraped_texts, scrape_errors = await scrape_urls(urls)
|
163 |
+
|
164 |
+
unique_scraped_texts = [*set(scraped_texts)]
|
165 |
+
if (unique_scraped_texts[0] == "") and (len(unique_scraped_texts) == 1):
|
166 |
+
raise NewsClassifierAPIScrapingError("Scrape Error: Couldn't scrape text from any of the URLs")
|
167 |
+
|
168 |
+
labels, probs = await predict_news_classes(urls, scraped_texts, calibrated_model, label_encoder)
|
169 |
+
label_prob = [{"label": "", "calibrated_prediction_proba": 0}
|
170 |
+
if t == "" else {"label": l, "calibrated_prediction_proba": p}
|
171 |
+
for l, p, t in zip(labels, probs, scraped_texts)]
|
172 |
+
status_code = 200
|
173 |
+
response_json = {'urls': urls, 'scraped_texts': scraped_texts, 'scrape_errors': scrape_errors, 'categories': label_prob, 'classifer_error': ''}
|
174 |
+
except Exception as e:
|
175 |
+
status_code = 500
|
176 |
+
if e.__class__.__name__ == "NewsClassifierAPIAuthenticationError":
|
177 |
+
status_code = 401
|
178 |
+
response_json = {'urls': urls, 'scraped_texts': scraped_texts, 'scrape_errors': scrape_errors, 'categories': "", 'classifier_error': f'Error: {e}'}
|
179 |
+
|
180 |
+
json_str = json.dumps(response_json, indent=5) # convert dict to JSON str
|
181 |
+
return Response(content=json_str, media_type='application/json', status_code=status_code)
|
182 |
+
|
183 |
+
|
184 |
+
if __name__ == '__main__':
|
185 |
+
uvicorn.run(app=app, host='0.0.0.0', port=7860, workers=3)
|
calibrated_classifier.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sklearn.dummy import DummyClassifier
|
2 |
+
from tqdm import tqdm
|
3 |
+
import multiprocessing
|
4 |
+
import numpy as np
|
5 |
+
import tensorflow as tf
|
6 |
+
from transformers import DistilBertTokenizerFast
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
class PredictProba(DummyClassifier):
|
11 |
+
def __init__(self, tflite_model_path: str, classes_: list, n_tokens: int):
|
12 |
+
self.classes_ = classes_ # required attribute for an estimator to be used in calibration classifier
|
13 |
+
self.n_tokens = n_tokens
|
14 |
+
self.tflite_model_path = tflite_model_path
|
15 |
+
|
16 |
+
|
17 |
+
def fit(self, x, y):
|
18 |
+
print('called fit')
|
19 |
+
return self # fit method is required for an estimator to be used in calibration classifier
|
20 |
+
|
21 |
+
@staticmethod
|
22 |
+
def get_token_batches(attention_mask, input_ids, batch_size: int=8):
|
23 |
+
n_texts = len(attention_mask)
|
24 |
+
n_batches = int(np.ceil(n_texts / batch_size))
|
25 |
+
if n_texts <= batch_size:
|
26 |
+
n_batches = 1
|
27 |
+
|
28 |
+
attention_mask_batches = []
|
29 |
+
input_ids_batches = []
|
30 |
+
|
31 |
+
for i in range(n_batches):
|
32 |
+
if i != n_batches-1:
|
33 |
+
attention_mask_batches.append(attention_mask[i*batch_size: batch_size*(i+1)])
|
34 |
+
input_ids_batches.append(input_ids[i*batch_size: batch_size*(i+1)])
|
35 |
+
else:
|
36 |
+
attention_mask_batches.append(attention_mask[i*batch_size:])
|
37 |
+
input_ids_batches.append(input_ids[i*batch_size:])
|
38 |
+
|
39 |
+
return attention_mask_batches, input_ids_batches
|
40 |
+
|
41 |
+
|
42 |
+
def get_batch_inference(self, batch_size, attention_mask, input_ids):
|
43 |
+
interpreter = tf.lite.Interpreter(model_path=self.tflite_model_path)
|
44 |
+
interpreter.allocate_tensors()
|
45 |
+
input_details = interpreter.get_input_details()
|
46 |
+
output_details = interpreter.get_output_details()[0]
|
47 |
+
interpreter.resize_tensor_input(input_details[0]['index'],[batch_size, self.n_tokens])
|
48 |
+
interpreter.resize_tensor_input(input_details[1]['index'],[batch_size, self.n_tokens])
|
49 |
+
interpreter.resize_tensor_input(output_details['index'],[batch_size, len(self.classes_)])
|
50 |
+
interpreter.allocate_tensors()
|
51 |
+
interpreter.set_tensor(input_details[0]["index"], attention_mask)
|
52 |
+
interpreter.set_tensor(input_details[1]["index"], input_ids)
|
53 |
+
interpreter.invoke()
|
54 |
+
tflite_pred = interpreter.get_tensor(output_details["index"])
|
55 |
+
return tflite_pred
|
56 |
+
|
57 |
+
def inference(self, texts):
|
58 |
+
model_checkpoint = "distilbert-base-uncased"
|
59 |
+
tokenizer = DistilBertTokenizerFast.from_pretrained(model_checkpoint)
|
60 |
+
tokens = tokenizer(texts, max_length=self.n_tokens, padding="max_length",
|
61 |
+
truncation=True, return_tensors="tf")
|
62 |
+
attention_mask, input_ids = tokens['attention_mask'], tokens['input_ids']
|
63 |
+
attention_mask_batches, input_ids_batches = self.get_token_batches(attention_mask, input_ids)
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
pool = multiprocessing.Pool(processes=multiprocessing.cpu_count())
|
68 |
+
results = []
|
69 |
+
for attention_mask, input_ids in zip(attention_mask_batches, input_ids_batches):
|
70 |
+
f = pool.apply_async(self.get_batch_inference, args=(len(attention_mask), attention_mask, input_ids))
|
71 |
+
results.append(f)
|
72 |
+
|
73 |
+
all_predictions = np.array([])
|
74 |
+
for n_batch in tqdm(range(len(results))):
|
75 |
+
tflite_pred = results[n_batch].get(timeout=360)
|
76 |
+
if n_batch == 0:
|
77 |
+
all_predictions = tflite_pred
|
78 |
+
else:
|
79 |
+
all_predictions = np.concatenate((all_predictions, tflite_pred), axis=0)
|
80 |
+
return all_predictions
|
81 |
+
|
82 |
+
def predict_proba(self, X, y=None):
|
83 |
+
predict_prob = self.inference(X)
|
84 |
+
return predict_prob
|
85 |
+
|
classification_models/calibrated_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b154508f547e10b14021fb7b004dc6c25558fbe1c6942706cfa843b6976a2ac2
|
3 |
+
size 4293
|
classification_models/label_encoder.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:92b26f07332ebdd93c8f8f2e8378ecba05415eb3ae6713bd9b1f4289d921c26f
|
3 |
+
size 370
|
classification_models/model.tflite
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:15140df1981b0d4edd6009ac340a481e344ffb663fc449ae2fec1e69ee931615
|
3 |
+
size 67002528
|
config.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
SCRAPER_TIMEOUT = 20
|
2 |
+
CHROME_DRIVER_PATH = "./chromedriver-linux64/chromedriver"
|
news_classifier.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import tensorflow as tf
|
3 |
+
import logging
|
4 |
+
|
5 |
+
|
6 |
+
def find_path(url):
|
7 |
+
if url == '':
|
8 |
+
return ''
|
9 |
+
url = url.replace("-/-", "-")
|
10 |
+
url_split = url.replace("https://", "")
|
11 |
+
url_split = url_split.replace("www.", "")
|
12 |
+
url_split = url_split.strip()
|
13 |
+
url = url.replace("//", "/")
|
14 |
+
url = url.replace("https/timesofindia-indiatimes-com", "")
|
15 |
+
url_split = url_split.split("/")
|
16 |
+
url_split = [u for u in url_split if (u != "") and
|
17 |
+
(u != "articleshow") and
|
18 |
+
(u.find(".cms")==-1) and
|
19 |
+
(u.find(".ece")==-1) and
|
20 |
+
(u.find(".htm")==-1) and
|
21 |
+
(len(u.split('-')) <= 5) and
|
22 |
+
(u.find(" ") == -1)
|
23 |
+
]
|
24 |
+
if len(url_split) > 2:
|
25 |
+
url_split = "/".join(url_split[1:])
|
26 |
+
else:
|
27 |
+
if len(url_split) > 0:
|
28 |
+
url_split = url_split[-1]
|
29 |
+
else:
|
30 |
+
url_split = '-'
|
31 |
+
return url_split
|
32 |
+
|
33 |
+
|
34 |
+
async def parse_prediction(tflite_pred, label_encoder):
|
35 |
+
tflite_pred_argmax = np.argmax(tflite_pred, axis=1)
|
36 |
+
tflite_pred_label = label_encoder.inverse_transform(tflite_pred_argmax)
|
37 |
+
tflite_pred_prob = np.max(tflite_pred, axis=1)
|
38 |
+
return tflite_pred_label, tflite_pred_prob
|
39 |
+
|
40 |
+
|
41 |
+
async def model_inference(text: list, calibrated_model, label_encoder):
|
42 |
+
logging.info('Entering news_classifier.model_inference()')
|
43 |
+
|
44 |
+
logging.info(f'Samples to predict: {len(text)}')
|
45 |
+
if text != "":
|
46 |
+
tflite_pred = calibrated_model.predict_proba(text)
|
47 |
+
tflite_pred = await parse_prediction(tflite_pred, label_encoder)
|
48 |
+
logging.info('Exiting news_classifier.model_inference()')
|
49 |
+
return tflite_pred
|
50 |
+
|
51 |
+
|
52 |
+
async def predict_news_classes(urls: list, texts: list, calibrated_model, label_encoder):
|
53 |
+
url_paths = [*map(find_path, urls)]
|
54 |
+
paths_texts = [f"{p}. {t}" for p, t in zip(url_paths, texts)]
|
55 |
+
label, prob = await model_inference(paths_texts, calibrated_model, label_encoder)
|
56 |
+
return label, prob
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers==4.39.3
|
2 |
+
tensorflow==2.15.0
|
3 |
+
unidecode
|
4 |
+
tf-keras==2.15.0
|
5 |
+
selenium==4.19.0
|
6 |
+
fastapi
|
7 |
+
pydantic
|
8 |
+
uvicorn
|
9 |
+
undetected-chromedriver
|
10 |
+
scikit-learn==1.2.2
|
11 |
+
cloudpickle
|
12 |
+
numpy==1.24.3
|
scraper.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from selenium import webdriver
|
2 |
+
from selenium.webdriver.common.by import By
|
3 |
+
import undetected_chromedriver as uc
|
4 |
+
import re
|
5 |
+
import logging
|
6 |
+
import os
|
7 |
+
import time
|
8 |
+
import random
|
9 |
+
from config import SCRAPER_TIMEOUT, CHROME_DRIVER_PATH
|
10 |
+
|
11 |
+
|
12 |
+
def get_text(url, n_words=15):
|
13 |
+
try:
|
14 |
+
driver = None
|
15 |
+
logging.warning(f"Initiated Scraping {url}")
|
16 |
+
user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36"
|
17 |
+
options = uc.ChromeOptions()
|
18 |
+
options.add_argument("--headless")
|
19 |
+
options.add_argument(f"user-agent={user_agent}")
|
20 |
+
options.add_argument("--blink-settings=imagesEnabled=false")
|
21 |
+
options.add_argument("--disable-images")
|
22 |
+
options.add_argument("--disable-blink-features=AutomationControlled")
|
23 |
+
options.add_argument("--disable-dev-shm-usage")
|
24 |
+
|
25 |
+
# options.add_argument("--disable-extensions")
|
26 |
+
# options.add_argument("--autoplay-policy=no-user-gesture-required")
|
27 |
+
# options.add_argument("--disable-infobars")
|
28 |
+
# options.add_argument("--disable-gpu")
|
29 |
+
|
30 |
+
driver = uc.Chrome(version_main=127, options=options, driver_executable_path=CHROME_DRIVER_PATH)
|
31 |
+
time.sleep(random.uniform(0.5, 1.5))
|
32 |
+
driver.set_page_load_timeout(SCRAPER_TIMEOUT)
|
33 |
+
driver.set_script_timeout(SCRAPER_TIMEOUT)
|
34 |
+
driver.implicitly_wait(3)
|
35 |
+
driver.get(url)
|
36 |
+
elem = driver.find_element(By.TAG_NAME, "body").text
|
37 |
+
sents = elem.split("\n")
|
38 |
+
sentence_list = []
|
39 |
+
for sent in sents:
|
40 |
+
sent = sent.strip()
|
41 |
+
if (len(sent.split()) >= n_words) and (len(re.findall(r"^\w.+[^\w\)\s]$", sent))>0):
|
42 |
+
sentence_list.append(sent)
|
43 |
+
driver.close()
|
44 |
+
driver.quit()
|
45 |
+
logging.warning("Closed Webdriver")
|
46 |
+
logging.warning("Successfully scraped text")
|
47 |
+
if len(sentence_list) < 3:
|
48 |
+
raise Exception("Found nothing to scrape.")
|
49 |
+
return "\n".join(sentence_list), ""
|
50 |
+
except Exception as e:
|
51 |
+
logging.warning(str(e))
|
52 |
+
if driver:
|
53 |
+
driver.close()
|
54 |
+
driver.quit()
|
55 |
+
logging.warning("Closed Webdriver")
|
56 |
+
err_msg = str(e).split('\n')[0]
|
57 |
+
return "", err_msg
|
58 |
+
|
59 |
+
|
60 |
+
def scrape_text(url, n_words=15,max_retries=2):
|
61 |
+
scraped_text = ""
|
62 |
+
scrape_error = ""
|
63 |
+
try:
|
64 |
+
n_tries = 1
|
65 |
+
while (n_tries <= max_retries) and (scraped_text == ""):
|
66 |
+
scraped_text, scrape_error = get_text(url=url, n_words=n_words)
|
67 |
+
n_tries += 1
|
68 |
+
return scraped_text, scrape_error
|
69 |
+
except Exception as e:
|
70 |
+
err_msg = str(e).split('\n')[0]
|
71 |
+
return "", err_msg
|