kuhs commited on
Commit
22d8c5e
·
verified ·
1 Parent(s): 30cf7a9

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +35 -0
  2. iris_mlp.weights.h5 +3 -0
  3. requirements.txt +1 -0
app.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import tensorflow as tf
3
+ import numpy as np
4
+
5
+
6
+ model_path = "iris_mlp.weights.h5"
7
+ model = tf.keras.Sequential([
8
+ tf.keras.layers.InputLayer(input_shape=[4]),
9
+ tf.keras.layers.BatchNormalization(),
10
+ tf.keras.layers.Dense(32, activation="relu"),
11
+ tf.keras.layers.Dense(16, activation="relu"),
12
+ tf.keras.layers.Dense(3, activation="softmax")
13
+ ])
14
+ model.load_weights(model_path)
15
+
16
+ labels = ['Setosa', 'Versicolour', 'Virginica']
17
+
18
+ # Define the core prediction function
19
+ def predict_iris(sepal_length, sepal_width, petal_length, petal_width):
20
+ features = [sepal_length, sepal_width, petal_length, petal_width]
21
+ features = np.array(features)[None, ...]
22
+ prediction = model.predict(features)
23
+ print(prediction)
24
+ confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))}
25
+ return confidences
26
+
27
+ # Create the Gradio interface
28
+ iface = gr.Interface(
29
+ fn=predict_iris,
30
+ inputs=["number", "number", "number", "number"],
31
+ outputs=gr.Label(),
32
+ examples=[[7.7, 2.6, 6.9, 2.3]]
33
+ )
34
+
35
+ iface.launch()
iris_mlp.weights.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4dd6c3813f72c9a26f660bfd898100dd26d4ed68a803cad7063361c5a5dc726
3
+ size 33792
requirements.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ tensorflow