File size: 7,167 Bytes
c583015
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import os
import glob
import numpy as np
import wandb
import copy
import argparse
import matplotlib.pyplot as plt

import torch
import torchvision.transforms as transforms
from torchinfo import summary

from utils import StyleContentDataset, DataStore, denorm_img
from loss import Loss
from model import Model


config = {
    "lr": 1e-4,
    "max_iter": 80000,
    "logging_interval": 100,
    "preview_interval": 1000,
    "batch_size": 4,
    "activations": "ReLU",
    "optimizer": "Adam",
    "lambda": 7
}

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using {device} device")

def prepare_data(style_dir, content_dir, preview_dir):
    norm = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    
    # Training images
    transform = transforms.Compose([transforms.Resize(512), transforms.RandomCrop(256)])
    style_imgs = glob.glob(os.path.join(style_dir, '*.jpg'))
    content_imgs = glob.glob(os.path.join(content_dir, '*.jpg'))

    train_dataset = StyleContentDataset(style_imgs, content_imgs, transform=transform, normalize=norm)
    datastore = DataStore(train_dataset, batch_size=config['batch_size'], shuffle=True)
    
    # Preview images
    transform = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(256)])
    preview_style_imgs = glob.glob(os.path.join(preview_dir, 'style/*.jpg'))
    preview_content_imgs = glob.glob(os.path.join(preview_dir, 'content/*.jpg'))

    # preview_dataset = StyleContentDataset(preview_style_imgs, preview_content_imgs, transform=transform, normalize=norm)
    preview_dataset = StyleContentDataset(preview_style_imgs, [preview_content_imgs[8]] * len(preview_style_imgs), transform=transform, normalize=norm)
    preview_datastore = DataStore(preview_dataset, batch_size=len(preview_dataset), shuffle=False)
    
    return datastore, preview_datastore


def preview(model: Model, datastore: DataStore, iteration, save=False, use_wandb=False):
    model.eval()
    with torch.no_grad():
        # np.random.shuffle(datastore.dataset.style_imgs)
        # np.random.shuffle(datastore.dataset.content_imgs)
        
        style, content = datastore.get()
        style, content = style.to(device), content.to(device)
        out = model(content, style)
        
        fig, axs = plt.subplots(8, 6, figsize=(20, 26))
        axs = axs.flatten()
        i = 0
        for (s, c, o) in zip(style, content, out): # style, content, out
            axs[i].imshow(denorm_img(s.cpu()).permute(1, 2, 0))
            axs[i].axis('off')
            axs[i].set_title('style')
            axs[i+1].imshow(denorm_img(c.cpu()).permute(1, 2, 0))
            axs[i+1].axis('off')
            axs[i+1].set_title('content')
            axs[i+2].imshow(denorm_img(o.cpu()).permute(1, 2, 0))
            axs[i+2].axis('off')
            axs[i+2].set_title('output')
            i += 3
         
        if save:
            fig.savefig(f'outputs/{iteration}_preview.png')
            plt.close(fig)
        
        if use_wandb:
            wandb.log({'preview': wandb.Image(f'outputs/{iteration}_preview.png')}, step=iteration)    


def train_one_iter(datastore: DataStore, model: Model, optimizer: torch.optim.Adam, loss_fn: Loss):
    model.train()
    
    style, content = datastore.get()
    style, content = style.to(device), content.to(device)
    
    optimizer.zero_grad()

    # Forward
    out = model(content, style)

    # Save activations
    style_activations = copy.deepcopy(model.activations)
    
    enc_out = model.encoder(out)
    out_activations = model.activations

    # Compute loss
    loss = loss_fn(enc_out, model.t, out_activations, style_activations)

    # Update parameters
    loss.backward()
    optimizer.step()

    return loss.item(), loss_fn.loss_c.item(), loss_fn.loss_s.item()


def train(datastore, preview_datastore, model: Model, optimizer: torch.optim.Adam, use_wandb=False):
    train_history = {'style_loss': [], 'content_loss': [], 'loss': []}
    
    # optimizer = torch.optim.Adam(model.decoder.parameters(), lr=config['lr'])
    loss_fn = Loss(lamb=config['lambda'])

    for i in range(config['max_iter']):
        loss, content_loss, style_loss = train_one_iter(datastore, model, optimizer, loss_fn)
        train_history['loss'].append(loss)
        train_history['style_loss'].append(style_loss)
        train_history['content_loss'].append(content_loss)

        if i%config['logging_interval'] == 0:
            print(f'iter: {i}')
            print(f'loss: {loss:>5f}, style loss: {style_loss:>5f}, content loss: {content_loss:>5f}')
            print('-------------------------------')

            if use_wandb:
                wandb.log({
                    'iter': i, 'loss': loss, 'style_loss': style_loss, 'content_loss': content_loss
                })

        if i%config['preview_interval'] == 0:
            torch.save({
                'iter': i, 'model_state': model.state_dict(), 'optimizer_state': optimizer.state_dict()
            }, 'outputs/checkpoint.pt')
            preview(model, preview_datastore, i, save=True, use_wandb=use_wandb)

    return train_history


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--content_path', type=str, help='path to content dataset')
    parser.add_argument('--style_path', type=str, help='path to content dataset')
    parser.add_argument('--preview_path', type=str, help='path to preview dataset')
    parser.add_argument('--wandb', type=str, help='wandb id')
    parser.add_argument('--model_path', type=str, help='path to model')
    args = parser.parse_args()

    use_wandb = False
    wandb_key = args.wandb
    if wandb_key:
        wandb.login(key=wandb_key)
        wandb.init(project="assignment-3", name="", reinit=True, config=config)    
        use_wandb = True

    if args.content_path and args.style_path and args.preview_path:
        content_dir = args.content_path
        style_dir = args.style_path
        preview_dir = args.preview_path
    else:
        print('You didnt specify the data path >:(')
        return
    
    if not os.path.isdir('outputs'):
        os.mkdir('outputs')

    datastore, preview_datastore = prepare_data(style_dir, content_dir, preview_dir)
    
    model = Model()
    optimizer = torch.optim.Adam(model.decoder.parameters(), lr=config['lr'])
    if args.model_path:
        # From checkpoint
        checkpoint = torch.load('outputs/checkpoint.pt')
        model.load_state_dict(checkpoint['model_state'])
        optimizer.load_state_dict(checkpoint['optimizer_state'])
        config['max_iter'] -= checkpoint['iter']

        # From final model
        # model.load_state_dict(torch.load(args.model_path, map_location=torch.device(device)))
    # print(summary(model))
    model.to(device)
    
    train(datastore, preview_datastore, model, optimizer, use_wandb)
    
    torch.save(model.state_dict(), 'outputs/model.pt')
    if use_wandb:
        artifact = wandb.Artifact('model', type='model')
        artifact.add_file('outputs/model.pt')
        wandb.log_artifact(artifact)
        wandb.finish()


if __name__ == '__main__':
    main()