Spaces:
Running
Running
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
from adain import mi, sigma | |
class Loss(nn.Module): | |
def __init__(self, lamb=8): | |
super().__init__() | |
self.lamb = lamb | |
def content_loss(self, enc_out: torch.Tensor, t: torch.Tensor) -> torch.Tensor: | |
return F.mse_loss(enc_out, t) | |
def style_loss(self, out_activations: dict, style_activations: dict) -> torch.Tensor: | |
means, sds = 0, 0 | |
for out_act, style_act in zip(out_activations.values(), style_activations.values()): | |
means += F.mse_loss(mi(out_act), mi(style_act)) | |
sds += F.mse_loss(sigma(out_act), sigma(style_act)) | |
return means + sds | |
def forward(self, enc_out: torch.Tensor, t: torch.Tensor, out_activations: dict, style_activations: dict) -> torch.Tensor: | |
self.loss_c = self.content_loss(enc_out, t) | |
self.loss_s = self.style_loss(out_activations, style_activations) | |
return (self.loss_c + self.lamb * self.loss_s) | |