style-transfer / src /utils.py
kuko6's picture
added files
c583015
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision.io import read_image, ImageReadMode
import numpy as np
def denorm_img(img: torch.Tensor) -> torch.Tensor:
std = torch.Tensor([0.229, 0.224, 0.225]).reshape(-1, 1, 1)
mean = torch.Tensor([0.485, 0.456, 0.406]).reshape(-1, 1, 1)
return torch.clip(img * std + mean, min=0, max=1)
class StyleContentDataset(Dataset):
def __init__(self, style_imgs, content_imgs, transform=None, normalize=None):
self.style_imgs = style_imgs
self.content_imgs = content_imgs
self.transform = transform
self.normalize = normalize
def __len__(self):
if len(self.style_imgs) < len(self.content_imgs):
return len(self.style_imgs)
else:
return len(self.content_imgs)
def __getitem__(self, idx):
try:
style = read_image(self.style_imgs[idx], ImageReadMode.RGB).float() / 255.0
content = read_image(self.content_imgs[idx], ImageReadMode.RGB).float() / 255.0
except RuntimeError:
print(self.style_imgs[idx])
print(self.content_imgs[idx])
style = read_image(self.style_imgs[0], ImageReadMode.RGB).float() / 255.0
content = read_image(self.content_imgs[0], ImageReadMode.RGB).float() / 255.0
if self.normalize:
style = self.normalize(style)
content = self.normalize(content)
if self.transform:
style = self.transform(style)
content = self.transform(content)
return style, content
class DataStore():
def __init__(self, dataset: StyleContentDataset, batch_size, shuffle=False):
self.dataset = dataset
self.dataloader = DataLoader(self.dataset, batch_size=batch_size, shuffle=shuffle, num_workers=2)
self.iterator = iter(self.dataloader)
def get(self):
try:
style, content = next(self.iterator)
except (StopIteration):
# print('| Repeating |')
# np.random.shuffle(self.dataset.style_imgs)
self.iterator = iter(self.dataloader)
style, content = next(self.iterator)
return style, content