Spaces:
Runtime error
Runtime error
import os | |
import PyPDF2 | |
from PIL import Image | |
import streamlit as st | |
model = T5ForConditionalGeneration.from_pretrained("t5-base") | |
tokenizer = T5TokenizerFast.from_pretrained("t5-base") | |
def read_pdf(pdf): | |
reader=PyPDF2.PdfReader(pdf) | |
text='' | |
for page in reader.pages: | |
text+=page.extract_text() | |
# text_file_name = 'text.txt' | |
# text_file_path = '/content/text.txt' | |
# with open(text_file_path, 'w') as text_file: | |
# text_file.write(text) | |
return text | |
def summarizer(pdf): | |
# model = T5ForConditionalGeneration.from_pretrained("t5-base") | |
# tokenizer = T5TokenizerFast.from_pretrained("t5-base") | |
text=read_pdf(pdf) | |
inputs = tokenizer.encode("summarize: " + text,return_tensors="pt", max_length=1000,truncation=True) | |
outputs = model.generate(inputs,max_length=1000, min_length=100,length_penalty=2.0, num_beams=4,early_stopping=True) | |
summary = tokenizer.decode(outputs[0]) | |
return summary | |
st.title(':blue[Abstractive Summarizer]') | |
st.header('by: _Team_ _Rare_ _species_') | |
uploaded_file = st.file_uploader('Choose your .pdf file', type="pdf") | |
if uploaded_file is not None: | |
if st.button('Summarize Document'): | |
with st.spinner("π Please wait while we produce a summary..."): | |
# text=read_pdf(uploaded_file) | |
summary=summarizer(uploaded_file) | |
st.divider() | |
st.markdown(summary, unsafe_allow_html=True) | |
st.divider() |