Spaces:
Sleeping
Sleeping
import io | |
# import io | |
import os | |
import numpy as np | |
import streamlit as st | |
import requests | |
from PIL import Image | |
from model import classify | |
import cv2 | |
# def get_model(): | |
# return bone_frac() | |
# pred_model = get_model() | |
# pred_model=bone_frac() | |
def predict(): | |
c=classify('tmp.jpg') | |
st.markdown('#### Predicted Captions:') | |
st.write(c) | |
st.title('Health Vision') | |
# img_url = st.text_input(label='Enter Image URL') | |
# if (img_url != "") and (img_url != None): | |
# img = Image.open(requests.get(img_url, stream=True).raw) | |
# img = img.convert('RGB') | |
# st.image(img) | |
# img.save('tmp.jpg') | |
# predict() | |
# os.remove('tmp.jpg') | |
hide_streamlit_style = """ | |
<style> | |
#MainMenu {visibility: hidden;} | |
footer {visibility: hidden;} | |
</style> | |
""" | |
st.markdown(hide_streamlit_style, unsafe_allow_html=True) | |
# st.markdown('<center style="opacity: 70%">OR</center>', unsafe_allow_html=True) | |
img_upload = st.file_uploader(label='Upload Image', type=['jpg', 'png', 'jpeg']) | |
if img_upload != None: | |
img = img_upload.read() | |
img = Image.open(io.BytesIO(img)) | |
img = img.convert('RGB') | |
img=np.asarray(img) | |
print(img) | |
# img=cv2.imread(img) | |
# img.save('tmp.jpg') | |
st.image(img) | |
c=classify(img) | |
st.markdown('#### Predicted Captions:') | |
st.write(c) | |
# st.write(c) | |
# predict() | |
# os.remove('tmp.jpg') |