import io | |
import os | |
import streamlit as st | |
import requests | |
from PIL import Image | |
from model import get_caption_model, generate_caption | |
def get_model(): | |
return get_caption_model() | |
caption_model = get_model() | |
def predict(): | |
captions = [] | |
pred_caption = generate_caption('tmp.jpg', caption_model) | |
st.markdown('#### Predicted Captions:') | |
captions.append(pred_caption) | |
for _ in range(4): | |
pred_caption = generate_caption('tmp.jpg', caption_model, add_noise=True) | |
if pred_caption not in captions: | |
captions.append(pred_caption) | |
for c in captions: | |
st.write(c) | |
st.title('Bone Fracture Detection') | |
img_url = st.text_input(label='Enter Image URL') | |
if (img_url != "") and (img_url != None): | |
img = Image.open(requests.get(img_url, stream=True).raw) | |
img = img.convert('RGB') | |
st.image(img) | |
img.save('tmp.jpg') | |
predict() | |
os.remove('tmp.jpg') | |
st.markdown('<center style="opacity: 70%">OR</center>', unsafe_allow_html=True) | |
img_upload = st.file_uploader(label='Upload Image', type=['jpg', 'png', 'jpeg']) | |
if img_upload != None: | |
img = img_upload.read() | |
img = Image.open(io.BytesIO(img)) | |
img = img.convert('RGB') | |
img.save('tmp.jpg') | |
st.image(img) | |
predict() | |
os.remove('tmp.jpg') | |