Spaces:
Sleeping
Sleeping
File size: 17,146 Bytes
32fdadc 29ef836 dec2e4d 32fdadc e189598 32fdadc dec2e4d 32fdadc dec2e4d 32fdadc d880abe 32fdadc 3a7b370 32fdadc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
import datetime
import os
import pathlib
import requests
import zipfile
import pandas as pd
import pydeck as pdk
import geopandas as gpd
import streamlit as st
import leafmap.colormaps as cm
from leafmap.common import hex_to_rgb
st.set_page_config(layout="wide")
st.sidebar.info(
"""
- Web App URL: <https://streamlit.gishub.org>
- GitHub repository: <https://github.com/giswqs/streamlit-geospatial>
"""
)
st.sidebar.title("Contact")
st.sidebar.info(
"""
Qiusheng Wu at [wetlands.io](https://wetlands.io) | [GitHub](https://github.com/giswqs) | [Twitter](https://twitter.com/giswqs) | [YouTube](https://www.youtube.com/c/QiushengWu) | [LinkedIn](https://www.linkedin.com/in/qiushengwu)
"""
)
STREAMLIT_STATIC_PATH = pathlib.Path(st.__path__[0]) / "static"
# We create a downloads directory within the streamlit static asset directory
# and we write output files to it
DOWNLOADS_PATH = STREAMLIT_STATIC_PATH / "downloads"
if not DOWNLOADS_PATH.is_dir():
DOWNLOADS_PATH.mkdir()
# Data source: https://www.realtor.com/research/data/
# link_prefix = "https://econdata.s3-us-west-2.amazonaws.com/Reports/"
link_prefix = "https://raw.githubusercontent.com/giswqs/data/main/housing/"
data_links = {
"weekly": {
"national": link_prefix + "Core/listing_weekly_core_aggregate_by_country.csv",
"metro": link_prefix + "Core/listing_weekly_core_aggregate_by_metro.csv",
},
"monthly_current": {
"national": link_prefix + "Core/RDC_Inventory_Core_Metrics_Country.csv",
"state": link_prefix + "Core/RDC_Inventory_Core_Metrics_State.csv",
"metro": link_prefix + "Core/RDC_Inventory_Core_Metrics_Metro.csv",
"county": link_prefix + "Core/RDC_Inventory_Core_Metrics_County.csv",
"zip": link_prefix + "Core/RDC_Inventory_Core_Metrics_Zip.csv",
},
"monthly_historical": {
"national": link_prefix + "Core/RDC_Inventory_Core_Metrics_Country_History.csv",
"state": link_prefix + "Core/RDC_Inventory_Core_Metrics_State_History.csv",
"metro": link_prefix + "Core/RDC_Inventory_Core_Metrics_Metro_History.csv",
"county": link_prefix + "Core/RDC_Inventory_Core_Metrics_County_History.csv",
"zip": link_prefix + "Core/RDC_Inventory_Core_Metrics_Zip_History.csv",
},
"hotness": {
"metro": link_prefix
+ "Hotness/RDC_Inventory_Hotness_Metrics_Metro_History.csv",
"county": link_prefix
+ "Hotness/RDC_Inventory_Hotness_Metrics_County_History.csv",
"zip": link_prefix + "Hotness/RDC_Inventory_Hotness_Metrics_Zip_History.csv",
},
}
def get_data_columns(df, category, frequency="monthly"):
if frequency == "monthly":
if category.lower() == "county":
del_cols = ["month_date_yyyymm", "county_fips", "county_name"]
elif category.lower() == "state":
del_cols = ["month_date_yyyymm", "state", "state_id"]
elif category.lower() == "national":
del_cols = ["month_date_yyyymm", "country"]
elif category.lower() == "metro":
del_cols = ["month_date_yyyymm", "cbsa_code", "cbsa_title", "HouseholdRank"]
elif category.lower() == "zip":
del_cols = ["month_date_yyyymm", "postal_code", "zip_name", "flag"]
elif frequency == "weekly":
if category.lower() == "national":
del_cols = ["week_end_date", "geo_country"]
elif category.lower() == "metro":
del_cols = ["week_end_date", "cbsa_code", "cbsa_title", "hh_rank"]
cols = df.columns.values.tolist()
for col in cols:
if col.strip() in del_cols:
cols.remove(col)
if category.lower() == "metro":
return cols[2:]
else:
return cols[1:]
@st.cache_data
def get_inventory_data(url):
df = pd.read_csv(url)
url = url.lower()
if "county" in url:
df["county_fips"] = df["county_fips"].map(str)
df["county_fips"] = df["county_fips"].str.zfill(5)
elif "state" in url:
df["STUSPS"] = df["state_id"].str.upper()
elif "metro" in url:
df["cbsa_code"] = df["cbsa_code"].map(str)
elif "zip" in url:
df["postal_code"] = df["postal_code"].map(str)
df["postal_code"] = df["postal_code"].str.zfill(5)
if "listing_weekly_core_aggregate_by_country" in url:
columns = get_data_columns(df, "national", "weekly")
for column in columns:
if column != "median_days_on_market_by_day_yy":
df[column] = df[column].str.rstrip("%").astype(float) / 100
if "listing_weekly_core_aggregate_by_metro" in url:
columns = get_data_columns(df, "metro", "weekly")
for column in columns:
if column != "median_days_on_market_by_day_yy":
df[column] = df[column].str.rstrip("%").astype(float) / 100
df["cbsa_code"] = df["cbsa_code"].str[:5]
return df
def filter_weekly_inventory(df, week):
df = df[df["week_end_date"] == week]
return df
def get_start_end_year(df):
start_year = int(str(df["month_date_yyyymm"].min())[:4])
end_year = int(str(df["month_date_yyyymm"].max())[:4])
return start_year, end_year
def get_periods(df):
return [str(d) for d in list(set(df["month_date_yyyymm"].tolist()))]
@st.cache_data
def get_geom_data(category):
prefix = (
"https://raw.githubusercontent.com/giswqs/streamlit-geospatial/master/data/"
)
links = {
"national": prefix + "us_nation.geojson",
"state": prefix + "us_states.geojson",
"county": prefix + "us_counties.geojson",
"metro": prefix + "us_metro_areas.geojson",
"zip": "https://www2.census.gov/geo/tiger/GENZ2018/shp/cb_2018_us_zcta510_500k.zip",
}
if category.lower() == "zip":
r = requests.get(links[category])
out_zip = os.path.join(DOWNLOADS_PATH, "cb_2018_us_zcta510_500k.zip")
with open(out_zip, "wb") as code:
code.write(r.content)
zip_ref = zipfile.ZipFile(out_zip, "r")
zip_ref.extractall(DOWNLOADS_PATH)
gdf = gpd.read_file(out_zip.replace("zip", "shp"))
else:
gdf = gpd.read_file(links[category])
return gdf
def join_attributes(gdf, df, category):
new_gdf = None
if category == "county":
new_gdf = gdf.merge(df, left_on="GEOID", right_on="county_fips", how="outer")
elif category == "state":
new_gdf = gdf.merge(df, left_on="STUSPS", right_on="STUSPS", how="outer")
elif category == "national":
if "geo_country" in df.columns.values.tolist():
df["country"] = None
df.loc[0, "country"] = "United States"
new_gdf = gdf.merge(df, left_on="NAME", right_on="country", how="outer")
elif category == "metro":
new_gdf = gdf.merge(df, left_on="CBSAFP", right_on="cbsa_code", how="outer")
elif category == "zip":
new_gdf = gdf.merge(df, left_on="GEOID10", right_on="postal_code", how="outer")
return new_gdf
def select_non_null(gdf, col_name):
new_gdf = gdf[~gdf[col_name].isna()]
return new_gdf
def select_null(gdf, col_name):
new_gdf = gdf[gdf[col_name].isna()]
return new_gdf
def get_data_dict(name):
in_csv = os.path.join(os.getcwd(), "data/realtor_data_dict.csv")
df = pd.read_csv(in_csv)
label = list(df[df["Name"] == name]["Label"])[0]
desc = list(df[df["Name"] == name]["Description"])[0]
return label, desc
def get_weeks(df):
seq = list(set(df[~df["week_end_date"].isnull()]["week_end_date"].tolist()))
weeks = [
datetime.date(int(d.split("/")[2]), int(d.split("/")[0]), int(d.split("/")[1]))
for d in seq
]
weeks.sort()
return weeks
def get_saturday(in_date):
idx = (in_date.weekday() + 1) % 7
sat = in_date + datetime.timedelta(6 - idx)
return sat
def app():
st.title("U.S. Real Estate Data and Market Trends")
st.markdown(
"""**Introduction:** This interactive dashboard is designed for visualizing U.S. real estate data and market trends at multiple levels (i.e., national,
state, county, and metro). The data sources include [Real Estate Data](https://www.realtor.com/research/data) from realtor.com and
[Cartographic Boundary Files](https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html) from U.S. Census Bureau.
Several open-source packages are used to process the data and generate the visualizations, e.g., [streamlit](https://streamlit.io),
[geopandas](https://geopandas.org), [leafmap](https://leafmap.org), and [pydeck](https://deckgl.readthedocs.io).
"""
)
with st.expander("See a demo"):
st.image("https://i.imgur.com/Z3dk6Tr.gif")
row1_col1, row1_col2, row1_col3, row1_col4, row1_col5 = st.columns(
[0.6, 0.8, 0.6, 1.4, 2]
)
with row1_col1:
frequency = st.selectbox("Monthly/weekly data", ["Monthly", "Weekly"])
with row1_col2:
types = ["Current month data", "Historical data"]
if frequency == "Weekly":
types.remove("Current month data")
cur_hist = st.selectbox(
"Current/historical data",
types,
)
with row1_col3:
if frequency == "Monthly":
scale = st.selectbox(
"Scale", ["National", "State", "Metro", "County"], index=3
)
else:
scale = st.selectbox("Scale", ["National", "Metro"], index=1)
gdf = get_geom_data(scale.lower())
if frequency == "Weekly":
inventory_df = get_inventory_data(data_links["weekly"][scale.lower()])
weeks = get_weeks(inventory_df)
with row1_col1:
selected_date = st.date_input("Select a date", value=weeks[-1])
saturday = get_saturday(selected_date)
selected_period = saturday.strftime("%-m/%-d/%Y")
if saturday not in weeks:
st.error(
"The selected date is not available in the data. Please select a date between {} and {}".format(
weeks[0], weeks[-1]
)
)
selected_period = weeks[-1].strftime("%-m/%-d/%Y")
inventory_df = get_inventory_data(data_links["weekly"][scale.lower()])
inventory_df = filter_weekly_inventory(inventory_df, selected_period)
if frequency == "Monthly":
if cur_hist == "Current month data":
inventory_df = get_inventory_data(
data_links["monthly_current"][scale.lower()]
)
selected_period = get_periods(inventory_df)[0]
else:
with row1_col2:
inventory_df = get_inventory_data(
data_links["monthly_historical"][scale.lower()]
)
start_year, end_year = get_start_end_year(inventory_df)
periods = get_periods(inventory_df)
with st.expander("Select year and month", True):
selected_year = st.slider(
"Year",
start_year,
end_year,
value=start_year,
step=1,
)
selected_month = st.slider(
"Month",
min_value=1,
max_value=12,
value=int(periods[0][-2:]),
step=1,
)
selected_period = str(selected_year) + str(selected_month).zfill(2)
if selected_period not in periods:
st.error("Data not available for selected year and month")
selected_period = periods[0]
inventory_df = inventory_df[
inventory_df["month_date_yyyymm"] == int(selected_period)
]
data_cols = get_data_columns(inventory_df, scale.lower(), frequency.lower())
with row1_col4:
selected_col = st.selectbox("Attribute", data_cols)
with row1_col5:
show_desc = st.checkbox("Show attribute description")
if show_desc:
try:
label, desc = get_data_dict(selected_col.strip())
markdown = f"""
**{label}**: {desc}
"""
st.markdown(markdown)
except:
st.warning("No description available for selected attribute")
row2_col1, row2_col2, row2_col3, row2_col4, row2_col5, row2_col6 = st.columns(
[0.6, 0.68, 0.7, 0.7, 1.5, 0.8]
)
palettes = cm.list_colormaps()
with row2_col1:
palette = st.selectbox("Color palette", palettes, index=palettes.index("Blues"))
with row2_col2:
n_colors = st.slider("Number of colors", min_value=2, max_value=20, value=8)
with row2_col3:
show_nodata = st.checkbox("Show nodata areas", value=True)
with row2_col4:
show_3d = st.checkbox("Show 3D view", value=False)
with row2_col5:
if show_3d:
elev_scale = st.slider(
"Elevation scale", min_value=1, max_value=1000000, value=1, step=10
)
with row2_col6:
st.info("Press Ctrl and move the left mouse button.")
else:
elev_scale = 1
gdf = join_attributes(gdf, inventory_df, scale.lower())
gdf_null = select_null(gdf, selected_col)
gdf = select_non_null(gdf, selected_col)
gdf = gdf.sort_values(by=selected_col, ascending=True)
colors = cm.get_palette(palette, n_colors)
colors = [hex_to_rgb(c) for c in colors]
for i, ind in enumerate(gdf.index):
index = int(i / (len(gdf) / len(colors)))
if index >= len(colors):
index = len(colors) - 1
gdf.loc[ind, "R"] = colors[index][0]
gdf.loc[ind, "G"] = colors[index][1]
gdf.loc[ind, "B"] = colors[index][2]
initial_view_state = pdk.ViewState(
latitude=40,
longitude=-100,
zoom=3,
max_zoom=16,
pitch=0,
bearing=0,
height=900,
width=None,
)
min_value = gdf[selected_col].min()
max_value = gdf[selected_col].max()
color = "color"
# color_exp = f"[({selected_col}-{min_value})/({max_value}-{min_value})*255, 0, 0]"
color_exp = f"[R, G, B]"
geojson = pdk.Layer(
"GeoJsonLayer",
gdf,
pickable=True,
opacity=0.5,
stroked=True,
filled=True,
extruded=show_3d,
wireframe=True,
get_elevation=f"{selected_col}",
elevation_scale=elev_scale,
# get_fill_color="color",
get_fill_color=color_exp,
get_line_color=[0, 0, 0],
get_line_width=2,
line_width_min_pixels=1,
)
geojson_null = pdk.Layer(
"GeoJsonLayer",
gdf_null,
pickable=True,
opacity=0.2,
stroked=True,
filled=True,
extruded=False,
wireframe=True,
# get_elevation="properties.ALAND/100000",
# get_fill_color="color",
get_fill_color=[200, 200, 200],
get_line_color=[0, 0, 0],
get_line_width=2,
line_width_min_pixels=1,
)
# tooltip = {"text": "Name: {NAME}"}
# tooltip_value = f"<b>Value:</b> {median_listing_price}""
tooltip = {
"html": "<b>Name:</b> {NAME}<br><b>Value:</b> {"
+ selected_col
+ "}<br><b>Date:</b> "
+ selected_period
+ "",
"style": {"backgroundColor": "steelblue", "color": "white"},
}
layers = [geojson]
if show_nodata:
layers.append(geojson_null)
r = pdk.Deck(
layers=layers,
initial_view_state=initial_view_state,
map_style="light",
tooltip=tooltip,
)
row3_col1, row3_col2 = st.columns([6, 1])
with row3_col1:
st.pydeck_chart(r)
with row3_col2:
st.write(
cm.create_colormap(
palette,
label=selected_col.replace("_", " ").title(),
width=0.2,
height=3,
orientation="vertical",
vmin=min_value,
vmax=max_value,
font_size=10,
)
)
row4_col1, row4_col2, row4_col3 = st.columns([1, 2, 3])
with row4_col1:
show_data = st.checkbox("Show raw data")
with row4_col2:
show_cols = st.multiselect("Select columns", data_cols)
with row4_col3:
show_colormaps = st.checkbox("Preview all color palettes")
if show_colormaps:
st.write(cm.plot_colormaps(return_fig=True))
if show_data:
if scale == "National":
st.dataframe(gdf[["NAME", "GEOID"] + show_cols])
elif scale == "State":
st.dataframe(gdf[["NAME", "STUSPS"] + show_cols])
elif scale == "County":
st.dataframe(gdf[["NAME", "STATEFP", "COUNTYFP"] + show_cols])
elif scale == "Metro":
st.dataframe(gdf[["NAME", "CBSAFP"] + show_cols])
elif scale == "Zip":
st.dataframe(gdf[["GEOID10"] + show_cols])
app()
|