kunifujiwara
commited on
Commit
β’
419ed50
1
Parent(s):
8f75bb5
modify pages
Browse files
pages/2_π²_Japan_Vegetation_Cover.py
CHANGED
@@ -12,25 +12,6 @@ import matplotlib.pyplot as plt
|
|
12 |
|
13 |
st.set_page_config(layout="wide")
|
14 |
|
15 |
-
st.sidebar.info(
|
16 |
-
"""
|
17 |
-
- Web App URL: <https://streamlit.gishub.org>
|
18 |
-
- GitHub repository: <https://github.com/giswqs/streamlit-geospatial>
|
19 |
-
"""
|
20 |
-
)
|
21 |
-
|
22 |
-
st.sidebar.title("Contact")
|
23 |
-
st.sidebar.info(
|
24 |
-
"""
|
25 |
-
Qiusheng Wu at [wetlands.io](https://wetlands.io) | [GitHub](https://github.com/giswqs) | [Twitter](https://twitter.com/giswqs) | [YouTube](https://www.youtube.com/c/QiushengWu) | [LinkedIn](https://www.linkedin.com/in/qiushengwu)
|
26 |
-
"""
|
27 |
-
)
|
28 |
-
|
29 |
-
STREAMLIT_STATIC_PATH = pathlib.Path(st.__path__[0]) / "static"
|
30 |
-
DOWNLOADS_PATH = STREAMLIT_STATIC_PATH / "downloads"
|
31 |
-
if not DOWNLOADS_PATH.is_dir():
|
32 |
-
DOWNLOADS_PATH.mkdir()
|
33 |
-
|
34 |
# Data source
|
35 |
data_links = {
|
36 |
"Tokyo": "https://raw.githubusercontent.com/kunifujiwara/data/master/frac_veg/FRAC_VEG_Tokyo.geojson",
|
@@ -47,17 +28,7 @@ def get_geom_data(prefecture):
|
|
47 |
response = requests.get(data_links[prefecture])
|
48 |
if response.status_code == 200:
|
49 |
geojson_data = json.loads(response.content)
|
50 |
-
|
51 |
-
|
52 |
-
data = []
|
53 |
-
for feature in features:
|
54 |
-
properties = feature['properties']
|
55 |
-
geometry = shape(feature['geometry'])
|
56 |
-
properties['geometry'] = geometry
|
57 |
-
data.append(properties)
|
58 |
-
|
59 |
-
gdf = gpd.GeoDataFrame(data)
|
60 |
-
gdf.set_geometry('geometry', inplace=True)
|
61 |
return gdf
|
62 |
else:
|
63 |
st.error(f"Failed to fetch data for {prefecture}. Status code: {response.status_code}")
|
@@ -66,19 +37,10 @@ def get_geom_data(prefecture):
|
|
66 |
def get_data_columns(gdf):
|
67 |
return gdf.select_dtypes(include=[float, int]).columns.tolist()
|
68 |
|
69 |
-
def select_non_null(gdf, col_name):
|
70 |
-
return gdf[~gdf[col_name].isna()]
|
71 |
-
|
72 |
-
def select_null(gdf, col_name):
|
73 |
-
return gdf[gdf[col_name].isna()]
|
74 |
-
|
75 |
def app():
|
76 |
st.title("Japan Vegetation Cover Fraction")
|
77 |
st.markdown(
|
78 |
-
"""**Introduction:** This interactive dashboard
|
79 |
-
The data sources include [Vegetation Cover Fraction](https://zenodo.org/records/5553516) from a research project (https://doi.org/10.3130/aijt.28.521),
|
80 |
-
and [Cartographic Boundary Files](https://www.e-stat.go.jp/gis/statmap-search?page=1&type=2&aggregateUnitForBoundary=A&toukeiCode=00200521&toukeiYear=2015&serveyId=A002005212015&coordsys=1&format=shape&datum=2000) from Census of Japan 2015.
|
81 |
-
"""
|
82 |
)
|
83 |
|
84 |
prefecture = st.selectbox("Prefecture", ["Tokyo", "Kanagawa", "Chiba", "Saitama"])
|
@@ -89,46 +51,41 @@ def app():
|
|
89 |
st.error("Failed to load data. Please try again later.")
|
90 |
return
|
91 |
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
)
|
98 |
|
99 |
-
|
|
|
100 |
palette = st.selectbox("Color palette", color_palettes, index=color_palettes.index('Blues'))
|
101 |
-
with
|
102 |
n_colors = st.slider("Number of colors", min_value=2, max_value=20, value=8)
|
103 |
-
with
|
104 |
-
show_nodata = st.checkbox("Show nodata areas", value=True)
|
105 |
-
with row2_col4:
|
106 |
show_3d = st.checkbox("Show 3D view", value=False)
|
107 |
-
with
|
108 |
if show_3d:
|
109 |
-
elev_scale = st.slider(
|
110 |
-
|
111 |
-
|
112 |
-
with row2_col6:
|
113 |
-
st.info("Press Ctrl and move the left mouse button.")
|
114 |
-
else:
|
115 |
-
elev_scale = 1
|
116 |
-
|
117 |
-
# Create a list of colors based on the selected palette and number of colors
|
118 |
cmap = plt.get_cmap(palette)
|
119 |
colors = [cmap(i / (n_colors - 1)) for i in range(n_colors)]
|
120 |
hex_colors = ['#%02x%02x%02x' % (int(r * 255), int(g * 255), int(b * 255)) for r, g, b, _ in colors]
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
gdf = select_non_null(gdf, selected_attribute)
|
128 |
|
129 |
layer = pdk.Layer(
|
130 |
"GeoJsonLayer",
|
131 |
-
|
132 |
pickable=True,
|
133 |
opacity=0.8,
|
134 |
stroked=True,
|
@@ -136,43 +93,25 @@ def app():
|
|
136 |
extruded=show_3d,
|
137 |
wireframe=True,
|
138 |
get_elevation=f"properties.{selected_attribute}" if show_3d else None,
|
139 |
-
elevation_scale=elev_scale,
|
140 |
get_fill_color="properties.color",
|
141 |
get_line_color=[0, 0, 0],
|
142 |
get_line_width=2,
|
143 |
line_width_min_pixels=1,
|
144 |
)
|
145 |
|
146 |
-
if show_nodata:
|
147 |
-
nodata_layer = pdk.Layer(
|
148 |
-
"GeoJsonLayer",
|
149 |
-
gdf_null.__geo_interface__,
|
150 |
-
pickable=True,
|
151 |
-
opacity=0.2,
|
152 |
-
stroked=True,
|
153 |
-
filled=True,
|
154 |
-
extruded=False,
|
155 |
-
get_fill_color=[200, 200, 200],
|
156 |
-
get_line_color=[0, 0, 0],
|
157 |
-
get_line_width=2,
|
158 |
-
line_width_min_pixels=1,
|
159 |
-
)
|
160 |
-
layers = [layer, nodata_layer]
|
161 |
-
else:
|
162 |
-
layers = [layer]
|
163 |
-
|
164 |
view_state = pdk.ViewState(
|
165 |
-
latitude=
|
166 |
-
longitude=
|
167 |
zoom=9,
|
168 |
pitch=45 if show_3d else 0,
|
169 |
)
|
170 |
|
171 |
r = pdk.Deck(
|
172 |
-
layers=
|
173 |
initial_view_state=view_state,
|
174 |
map_style="mapbox://styles/mapbox/light-v9",
|
175 |
-
tooltip={"text": "{
|
176 |
)
|
177 |
|
178 |
st.pydeck_chart(r)
|
@@ -180,6 +119,6 @@ def app():
|
|
180 |
st.write(color_scale)
|
181 |
|
182 |
if st.checkbox("Show raw data"):
|
183 |
-
st.write(
|
184 |
|
185 |
app()
|
|
|
12 |
|
13 |
st.set_page_config(layout="wide")
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
# Data source
|
16 |
data_links = {
|
17 |
"Tokyo": "https://raw.githubusercontent.com/kunifujiwara/data/master/frac_veg/FRAC_VEG_Tokyo.geojson",
|
|
|
28 |
response = requests.get(data_links[prefecture])
|
29 |
if response.status_code == 200:
|
30 |
geojson_data = json.loads(response.content)
|
31 |
+
gdf = gpd.GeoDataFrame.from_features(geojson_data['features'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
return gdf
|
33 |
else:
|
34 |
st.error(f"Failed to fetch data for {prefecture}. Status code: {response.status_code}")
|
|
|
37 |
def get_data_columns(gdf):
|
38 |
return gdf.select_dtypes(include=[float, int]).columns.tolist()
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
def app():
|
41 |
st.title("Japan Vegetation Cover Fraction")
|
42 |
st.markdown(
|
43 |
+
"""**Introduction:** This interactive dashboard visualizes Japan Fractional Vegetation Cover at town block levels."""
|
|
|
|
|
|
|
44 |
)
|
45 |
|
46 |
prefecture = st.selectbox("Prefecture", ["Tokyo", "Kanagawa", "Chiba", "Saitama"])
|
|
|
51 |
st.error("Failed to load data. Please try again later.")
|
52 |
return
|
53 |
|
54 |
+
# City filter
|
55 |
+
cities = sorted(gdf['CITY_NAME_x'].unique().tolist())
|
56 |
+
selected_cities = st.multiselect("Select cities to display", cities, default=cities)
|
57 |
+
|
58 |
+
# Filter GeoDataFrame based on selected cities
|
59 |
+
gdf_filtered = gdf[gdf['CITY_NAME_x'].isin(selected_cities)]
|
60 |
|
61 |
+
attributes = get_data_columns(gdf_filtered)
|
62 |
+
selected_attribute = st.selectbox("Select attribute to visualize", attributes)
|
|
|
63 |
|
64 |
+
col1, col2, col3, col4 = st.columns(4)
|
65 |
+
with col1:
|
66 |
palette = st.selectbox("Color palette", color_palettes, index=color_palettes.index('Blues'))
|
67 |
+
with col2:
|
68 |
n_colors = st.slider("Number of colors", min_value=2, max_value=20, value=8)
|
69 |
+
with col3:
|
|
|
|
|
70 |
show_3d = st.checkbox("Show 3D view", value=False)
|
71 |
+
with col4:
|
72 |
if show_3d:
|
73 |
+
elev_scale = st.slider("Elevation scale", min_value=1, max_value=1000000, value=1, step=10)
|
74 |
+
|
75 |
+
# Create color scale
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
cmap = plt.get_cmap(palette)
|
77 |
colors = [cmap(i / (n_colors - 1)) for i in range(n_colors)]
|
78 |
hex_colors = ['#%02x%02x%02x' % (int(r * 255), int(g * 255), int(b * 255)) for r, g, b, _ in colors]
|
79 |
|
80 |
+
vmin, vmax = gdf_filtered[selected_attribute].min(), gdf_filtered[selected_attribute].max()
|
81 |
+
color_scale = cm.LinearColormap(colors=hex_colors, vmin=vmin, vmax=vmax)
|
82 |
+
|
83 |
+
gdf_filtered['color'] = gdf_filtered[selected_attribute].apply(lambda x: color_scale(x))
|
84 |
+
gdf_filtered['color'] = gdf_filtered['color'].apply(lambda x: [int(x[1:3], 16), int(x[3:5], 16), int(x[5:7], 16)])
|
|
|
85 |
|
86 |
layer = pdk.Layer(
|
87 |
"GeoJsonLayer",
|
88 |
+
gdf_filtered.__geo_interface__,
|
89 |
pickable=True,
|
90 |
opacity=0.8,
|
91 |
stroked=True,
|
|
|
93 |
extruded=show_3d,
|
94 |
wireframe=True,
|
95 |
get_elevation=f"properties.{selected_attribute}" if show_3d else None,
|
96 |
+
elevation_scale=elev_scale if show_3d else 1,
|
97 |
get_fill_color="properties.color",
|
98 |
get_line_color=[0, 0, 0],
|
99 |
get_line_width=2,
|
100 |
line_width_min_pixels=1,
|
101 |
)
|
102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
view_state = pdk.ViewState(
|
104 |
+
latitude=gdf_filtered.geometry.centroid.y.mean(),
|
105 |
+
longitude=gdf_filtered.geometry.centroid.x.mean(),
|
106 |
zoom=9,
|
107 |
pitch=45 if show_3d else 0,
|
108 |
)
|
109 |
|
110 |
r = pdk.Deck(
|
111 |
+
layers=[layer],
|
112 |
initial_view_state=view_state,
|
113 |
map_style="mapbox://styles/mapbox/light-v9",
|
114 |
+
tooltip={"text": "{CITY_NAME_x}\n{" + selected_attribute + "}"}
|
115 |
)
|
116 |
|
117 |
st.pydeck_chart(r)
|
|
|
119 |
st.write(color_scale)
|
120 |
|
121 |
if st.checkbox("Show raw data"):
|
122 |
+
st.write(gdf_filtered[['CITY_NAME_x', selected_attribute]])
|
123 |
|
124 |
app()
|