Spaces:
Sleeping
Sleeping
Commit
·
fa6051a
1
Parent(s):
6e3a184
modify pages
Browse files- pages/1_🌲_Japan_Vegetation_Cover.py +44 -204
pages/1_🌲_Japan_Vegetation_Cover.py
CHANGED
@@ -1,14 +1,12 @@
|
|
1 |
-
import
|
2 |
-
import
|
|
|
|
|
|
|
3 |
import pathlib
|
|
|
4 |
import requests
|
5 |
import zipfile
|
6 |
-
import pandas as pd
|
7 |
-
import pydeck as pdk
|
8 |
-
import geopandas as gpd
|
9 |
-
import streamlit as st
|
10 |
-
import leafmap.colormaps as cm
|
11 |
-
from leafmap.common import hex_to_rgb
|
12 |
|
13 |
st.set_page_config(layout="wide")
|
14 |
|
@@ -27,197 +25,31 @@ st.sidebar.info(
|
|
27 |
)
|
28 |
|
29 |
STREAMLIT_STATIC_PATH = pathlib.Path(st.__path__[0]) / "static"
|
30 |
-
# We create a downloads directory within the streamlit static asset directory
|
31 |
-
# and we write output files to it
|
32 |
DOWNLOADS_PATH = STREAMLIT_STATIC_PATH / "downloads"
|
33 |
if not DOWNLOADS_PATH.is_dir():
|
34 |
DOWNLOADS_PATH.mkdir()
|
35 |
|
36 |
-
# Data source
|
37 |
-
# link_prefix = "https://econdata.s3-us-west-2.amazonaws.com/Reports/"
|
38 |
-
link_prefix = "https://raw.githubusercontent.com/giswqs/data/main/housing/"
|
39 |
-
|
40 |
data_links = {
|
41 |
-
"
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
"monthly_current": {
|
46 |
-
"national": link_prefix + "Core/RDC_Inventory_Core_Metrics_Country.csv",
|
47 |
-
"state": link_prefix + "Core/RDC_Inventory_Core_Metrics_State.csv",
|
48 |
-
"metro": link_prefix + "Core/RDC_Inventory_Core_Metrics_Metro.csv",
|
49 |
-
"county": link_prefix + "Core/RDC_Inventory_Core_Metrics_County.csv",
|
50 |
-
"zip": link_prefix + "Core/RDC_Inventory_Core_Metrics_Zip.csv",
|
51 |
-
},
|
52 |
-
"monthly_historical": {
|
53 |
-
"national": link_prefix + "Core/RDC_Inventory_Core_Metrics_Country_History.csv",
|
54 |
-
"state": link_prefix + "Core/RDC_Inventory_Core_Metrics_State_History.csv",
|
55 |
-
"metro": link_prefix + "Core/RDC_Inventory_Core_Metrics_Metro_History.csv",
|
56 |
-
"county": link_prefix + "Core/RDC_Inventory_Core_Metrics_County_History.csv",
|
57 |
-
"zip": link_prefix + "Core/RDC_Inventory_Core_Metrics_Zip_History.csv",
|
58 |
-
},
|
59 |
-
"hotness": {
|
60 |
-
"metro": link_prefix
|
61 |
-
+ "Hotness/RDC_Inventory_Hotness_Metrics_Metro_History.csv",
|
62 |
-
"county": link_prefix
|
63 |
-
+ "Hotness/RDC_Inventory_Hotness_Metrics_County_History.csv",
|
64 |
-
"zip": link_prefix + "Hotness/RDC_Inventory_Hotness_Metrics_Zip_History.csv",
|
65 |
-
},
|
66 |
}
|
67 |
|
68 |
-
|
69 |
-
def get_data_columns(df, category, frequency="monthly"):
|
70 |
-
if frequency == "monthly":
|
71 |
-
if category.lower() == "county":
|
72 |
-
del_cols = ["month_date_yyyymm", "county_fips", "county_name"]
|
73 |
-
elif category.lower() == "state":
|
74 |
-
del_cols = ["month_date_yyyymm", "state", "state_id"]
|
75 |
-
elif category.lower() == "national":
|
76 |
-
del_cols = ["month_date_yyyymm", "country"]
|
77 |
-
elif category.lower() == "metro":
|
78 |
-
del_cols = ["month_date_yyyymm", "cbsa_code", "cbsa_title", "HouseholdRank"]
|
79 |
-
elif category.lower() == "zip":
|
80 |
-
del_cols = ["month_date_yyyymm", "postal_code", "zip_name", "flag"]
|
81 |
-
elif frequency == "weekly":
|
82 |
-
if category.lower() == "national":
|
83 |
-
del_cols = ["week_end_date", "geo_country"]
|
84 |
-
elif category.lower() == "metro":
|
85 |
-
del_cols = ["week_end_date", "cbsa_code", "cbsa_title", "hh_rank"]
|
86 |
-
|
87 |
-
cols = df.columns.values.tolist()
|
88 |
-
|
89 |
-
for col in cols:
|
90 |
-
if col.strip() in del_cols:
|
91 |
-
cols.remove(col)
|
92 |
-
if category.lower() == "metro":
|
93 |
-
return cols[2:]
|
94 |
-
else:
|
95 |
-
return cols[1:]
|
96 |
-
|
97 |
-
|
98 |
-
@st.cache_data
|
99 |
-
def get_inventory_data(url):
|
100 |
-
df = pd.read_csv(url)
|
101 |
-
url = url.lower()
|
102 |
-
if "county" in url:
|
103 |
-
df["county_fips"] = df["county_fips"].map(str)
|
104 |
-
df["county_fips"] = df["county_fips"].str.zfill(5)
|
105 |
-
elif "state" in url:
|
106 |
-
df["STUSPS"] = df["state_id"].str.upper()
|
107 |
-
elif "metro" in url:
|
108 |
-
df["cbsa_code"] = df["cbsa_code"].map(str)
|
109 |
-
elif "zip" in url:
|
110 |
-
df["postal_code"] = df["postal_code"].map(str)
|
111 |
-
df["postal_code"] = df["postal_code"].str.zfill(5)
|
112 |
-
|
113 |
-
if "listing_weekly_core_aggregate_by_country" in url:
|
114 |
-
columns = get_data_columns(df, "national", "weekly")
|
115 |
-
for column in columns:
|
116 |
-
if column != "median_days_on_market_by_day_yy":
|
117 |
-
df[column] = df[column].str.rstrip("%").astype(float) / 100
|
118 |
-
if "listing_weekly_core_aggregate_by_metro" in url:
|
119 |
-
columns = get_data_columns(df, "metro", "weekly")
|
120 |
-
for column in columns:
|
121 |
-
if column != "median_days_on_market_by_day_yy":
|
122 |
-
df[column] = df[column].str.rstrip("%").astype(float) / 100
|
123 |
-
df["cbsa_code"] = df["cbsa_code"].str[:5]
|
124 |
-
return df
|
125 |
-
|
126 |
-
|
127 |
-
def filter_weekly_inventory(df, week):
|
128 |
-
df = df[df["week_end_date"] == week]
|
129 |
-
return df
|
130 |
-
|
131 |
-
|
132 |
-
def get_start_end_year(df):
|
133 |
-
start_year = int(str(df["month_date_yyyymm"].min())[:4])
|
134 |
-
end_year = int(str(df["month_date_yyyymm"].max())[:4])
|
135 |
-
return start_year, end_year
|
136 |
-
|
137 |
-
|
138 |
-
def get_periods(df):
|
139 |
-
return [str(d) for d in list(set(df["month_date_yyyymm"].tolist()))]
|
140 |
-
|
141 |
-
|
142 |
@st.cache_data
|
143 |
-
def get_geom_data(
|
144 |
-
|
145 |
-
prefix = (
|
146 |
-
"https://raw.githubusercontent.com/giswqs/streamlit-geospatial/master/data/"
|
147 |
-
)
|
148 |
-
links = {
|
149 |
-
"national": prefix + "us_nation.geojson",
|
150 |
-
"state": prefix + "us_states.geojson",
|
151 |
-
"county": prefix + "us_counties.geojson",
|
152 |
-
"metro": prefix + "us_metro_areas.geojson",
|
153 |
-
"zip": "https://www2.census.gov/geo/tiger/GENZ2018/shp/cb_2018_us_zcta510_500k.zip",
|
154 |
-
}
|
155 |
-
|
156 |
-
if category.lower() == "zip":
|
157 |
-
r = requests.get(links[category])
|
158 |
-
out_zip = os.path.join(DOWNLOADS_PATH, "cb_2018_us_zcta510_500k.zip")
|
159 |
-
with open(out_zip, "wb") as code:
|
160 |
-
code.write(r.content)
|
161 |
-
zip_ref = zipfile.ZipFile(out_zip, "r")
|
162 |
-
zip_ref.extractall(DOWNLOADS_PATH)
|
163 |
-
gdf = gpd.read_file(out_zip.replace("zip", "shp"))
|
164 |
-
else:
|
165 |
-
gdf = gpd.read_file(links[category])
|
166 |
return gdf
|
167 |
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
new_gdf = None
|
172 |
-
if category == "county":
|
173 |
-
new_gdf = gdf.merge(df, left_on="GEOID", right_on="county_fips", how="outer")
|
174 |
-
elif category == "state":
|
175 |
-
new_gdf = gdf.merge(df, left_on="STUSPS", right_on="STUSPS", how="outer")
|
176 |
-
elif category == "national":
|
177 |
-
if "geo_country" in df.columns.values.tolist():
|
178 |
-
df["country"] = None
|
179 |
-
df.loc[0, "country"] = "United States"
|
180 |
-
new_gdf = gdf.merge(df, left_on="NAME", right_on="country", how="outer")
|
181 |
-
elif category == "metro":
|
182 |
-
new_gdf = gdf.merge(df, left_on="CBSAFP", right_on="cbsa_code", how="outer")
|
183 |
-
elif category == "zip":
|
184 |
-
new_gdf = gdf.merge(df, left_on="GEOID10", right_on="postal_code", how="outer")
|
185 |
-
return new_gdf
|
186 |
-
|
187 |
|
188 |
def select_non_null(gdf, col_name):
|
189 |
-
|
190 |
-
return new_gdf
|
191 |
-
|
192 |
|
193 |
def select_null(gdf, col_name):
|
194 |
-
|
195 |
-
return new_gdf
|
196 |
-
|
197 |
-
|
198 |
-
def get_data_dict(name):
|
199 |
-
in_csv = os.path.join(os.getcwd(), "data/realtor_data_dict.csv")
|
200 |
-
df = pd.read_csv(in_csv)
|
201 |
-
label = list(df[df["Name"] == name]["Label"])[0]
|
202 |
-
desc = list(df[df["Name"] == name]["Description"])[0]
|
203 |
-
return label, desc
|
204 |
-
|
205 |
-
|
206 |
-
def get_weeks(df):
|
207 |
-
seq = list(set(df[~df["week_end_date"].isnull()]["week_end_date"].tolist()))
|
208 |
-
weeks = [
|
209 |
-
datetime.date(int(d.split("/")[2]), int(d.split("/")[0]), int(d.split("/")[1]))
|
210 |
-
for d in seq
|
211 |
-
]
|
212 |
-
weeks.sort()
|
213 |
-
return weeks
|
214 |
-
|
215 |
-
|
216 |
-
def get_saturday(in_date):
|
217 |
-
idx = (in_date.weekday() + 1) % 7
|
218 |
-
sat = in_date + datetime.timedelta(6 - idx)
|
219 |
-
return sat
|
220 |
-
|
221 |
|
222 |
def app():
|
223 |
st.title("Japan Vegetation Cover Fraction")
|
@@ -225,18 +57,14 @@ def app():
|
|
225 |
"""**Introduction:** This interactive dashboard is designed for visualizing Japan Fractional Vegetation Cover at town block levels.
|
226 |
The data sources include [Vegetation Cover Fraction](https://zenodo.org/records/5553516) from a research project (https://doi.org/10.3130/aijt.28.521),
|
227 |
and [Cartographic Boundary Files](https://www.e-stat.go.jp/gis/statmap-search?page=1&type=2&aggregateUnitForBoundary=A&toukeiCode=00200521&toukeiYear=2015&serveyId=A002005212015&coordsys=1&format=shape&datum=2000) from Census of Japan 2015.
|
228 |
-
|
229 |
-
[geopandas](https://geopandas.org), [leafmap](https://leafmap.org), and [pydeck](https://deckgl.readthedocs.io).
|
230 |
-
"""
|
231 |
)
|
232 |
|
233 |
prefecture = st.selectbox("Prefecture", ["Tokyo", "Kanagawa", "Chiba", "Saitama"])
|
234 |
|
235 |
-
|
236 |
-
gdf = gpd.read_file(f'https://github.com/kunifujiwara/data/blob/master/frac_veg/FRAC_VEG_{prefecture}.geojson')
|
237 |
|
238 |
-
|
239 |
-
attributes = gdf.select_dtypes(include=[float, int]).columns.tolist()
|
240 |
selected_attribute = st.selectbox("Select attribute to visualize", attributes)
|
241 |
|
242 |
row2_col1, row2_col2, row2_col3, row2_col4, row2_col5, row2_col6 = st.columns(
|
@@ -262,14 +90,13 @@ def app():
|
|
262 |
else:
|
263 |
elev_scale = 1
|
264 |
|
265 |
-
# Create color map
|
266 |
color_scale = cm.LinearColormap(colors=cm.get_palette(palette, n_colors), vmin=gdf[selected_attribute].min(), vmax=gdf[selected_attribute].max())
|
267 |
gdf['color'] = gdf[selected_attribute].apply(lambda x: color_scale(x))
|
268 |
-
|
269 |
-
# Convert hex colors to RGB
|
270 |
gdf['color'] = gdf['color'].apply(lambda x: [int(x[1:3], 16), int(x[3:5], 16), int(x[5:7], 16)])
|
271 |
|
272 |
-
|
|
|
|
|
273 |
layer = pdk.Layer(
|
274 |
"GeoJsonLayer",
|
275 |
gdf,
|
@@ -287,7 +114,24 @@ def app():
|
|
287 |
line_width_min_pixels=1,
|
288 |
)
|
289 |
|
290 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
view_state = pdk.ViewState(
|
292 |
latitude=gdf.geometry.centroid.y.mean(),
|
293 |
longitude=gdf.geometry.centroid.x.mean(),
|
@@ -295,23 +139,19 @@ def app():
|
|
295 |
pitch=45 if show_3d else 0,
|
296 |
)
|
297 |
|
298 |
-
# Create PyDeck chart
|
299 |
r = pdk.Deck(
|
300 |
-
layers=
|
301 |
initial_view_state=view_state,
|
302 |
map_style="mapbox://styles/mapbox/light-v9",
|
303 |
tooltip={"text": "{NAME}\n{" + selected_attribute + "}"}
|
304 |
)
|
305 |
|
306 |
-
# Display the map
|
307 |
st.pydeck_chart(r)
|
308 |
|
309 |
-
# Display color scale
|
310 |
st.write(color_scale)
|
311 |
|
312 |
-
# Option to show raw data
|
313 |
if st.checkbox("Show raw data"):
|
314 |
st.write(gdf[[selected_attribute, 'NAME']])
|
315 |
|
316 |
-
|
317 |
-
app()
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import geopandas as gpd
|
3 |
+
import pydeck as pdk
|
4 |
+
import pandas as pd
|
5 |
+
from branca import colormap as cm
|
6 |
import pathlib
|
7 |
+
import os
|
8 |
import requests
|
9 |
import zipfile
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
st.set_page_config(layout="wide")
|
12 |
|
|
|
25 |
)
|
26 |
|
27 |
STREAMLIT_STATIC_PATH = pathlib.Path(st.__path__[0]) / "static"
|
|
|
|
|
28 |
DOWNLOADS_PATH = STREAMLIT_STATIC_PATH / "downloads"
|
29 |
if not DOWNLOADS_PATH.is_dir():
|
30 |
DOWNLOADS_PATH.mkdir()
|
31 |
|
32 |
+
# Data source
|
|
|
|
|
|
|
33 |
data_links = {
|
34 |
+
"Tokyo": "https://github.com/kunifujiwara/data/blob/master/frac_veg/FRAC_VEG_Tokyo.geojson",
|
35 |
+
"Kanagawa": "https://github.com/kunifujiwara/data/blob/master/frac_veg/FRAC_VEG_Kanagawa.geojson",
|
36 |
+
"Chiba": "https://github.com/kunifujiwara/data/blob/master/frac_veg/FRAC_VEG_Chiba.geojson",
|
37 |
+
"Saitama": "https://github.com/kunifujiwara/data/blob/master/frac_veg/FRAC_VEG_Saitama.geojson",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
}
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
@st.cache_data
|
41 |
+
def get_geom_data(prefecture):
|
42 |
+
gdf = gpd.read_file(data_links[prefecture])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
return gdf
|
44 |
|
45 |
+
def get_data_columns(gdf):
|
46 |
+
return gdf.select_dtypes(include=[float, int]).columns.tolist()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
def select_non_null(gdf, col_name):
|
49 |
+
return gdf[~gdf[col_name].isna()]
|
|
|
|
|
50 |
|
51 |
def select_null(gdf, col_name):
|
52 |
+
return gdf[gdf[col_name].isna()]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
def app():
|
55 |
st.title("Japan Vegetation Cover Fraction")
|
|
|
57 |
"""**Introduction:** This interactive dashboard is designed for visualizing Japan Fractional Vegetation Cover at town block levels.
|
58 |
The data sources include [Vegetation Cover Fraction](https://zenodo.org/records/5553516) from a research project (https://doi.org/10.3130/aijt.28.521),
|
59 |
and [Cartographic Boundary Files](https://www.e-stat.go.jp/gis/statmap-search?page=1&type=2&aggregateUnitForBoundary=A&toukeiCode=00200521&toukeiYear=2015&serveyId=A002005212015&coordsys=1&format=shape&datum=2000) from Census of Japan 2015.
|
60 |
+
"""
|
|
|
|
|
61 |
)
|
62 |
|
63 |
prefecture = st.selectbox("Prefecture", ["Tokyo", "Kanagawa", "Chiba", "Saitama"])
|
64 |
|
65 |
+
gdf = get_geom_data(prefecture)
|
|
|
66 |
|
67 |
+
attributes = get_data_columns(gdf)
|
|
|
68 |
selected_attribute = st.selectbox("Select attribute to visualize", attributes)
|
69 |
|
70 |
row2_col1, row2_col2, row2_col3, row2_col4, row2_col5, row2_col6 = st.columns(
|
|
|
90 |
else:
|
91 |
elev_scale = 1
|
92 |
|
|
|
93 |
color_scale = cm.LinearColormap(colors=cm.get_palette(palette, n_colors), vmin=gdf[selected_attribute].min(), vmax=gdf[selected_attribute].max())
|
94 |
gdf['color'] = gdf[selected_attribute].apply(lambda x: color_scale(x))
|
|
|
|
|
95 |
gdf['color'] = gdf['color'].apply(lambda x: [int(x[1:3], 16), int(x[3:5], 16), int(x[5:7], 16)])
|
96 |
|
97 |
+
gdf_null = select_null(gdf, selected_attribute)
|
98 |
+
gdf = select_non_null(gdf, selected_attribute)
|
99 |
+
|
100 |
layer = pdk.Layer(
|
101 |
"GeoJsonLayer",
|
102 |
gdf,
|
|
|
114 |
line_width_min_pixels=1,
|
115 |
)
|
116 |
|
117 |
+
if show_nodata:
|
118 |
+
nodata_layer = pdk.Layer(
|
119 |
+
"GeoJsonLayer",
|
120 |
+
gdf_null,
|
121 |
+
pickable=True,
|
122 |
+
opacity=0.2,
|
123 |
+
stroked=True,
|
124 |
+
filled=True,
|
125 |
+
extruded=False,
|
126 |
+
get_fill_color=[200, 200, 200],
|
127 |
+
get_line_color=[0, 0, 0],
|
128 |
+
get_line_width=2,
|
129 |
+
line_width_min_pixels=1,
|
130 |
+
)
|
131 |
+
layers = [layer, nodata_layer]
|
132 |
+
else:
|
133 |
+
layers = [layer]
|
134 |
+
|
135 |
view_state = pdk.ViewState(
|
136 |
latitude=gdf.geometry.centroid.y.mean(),
|
137 |
longitude=gdf.geometry.centroid.x.mean(),
|
|
|
139 |
pitch=45 if show_3d else 0,
|
140 |
)
|
141 |
|
|
|
142 |
r = pdk.Deck(
|
143 |
+
layers=layers,
|
144 |
initial_view_state=view_state,
|
145 |
map_style="mapbox://styles/mapbox/light-v9",
|
146 |
tooltip={"text": "{NAME}\n{" + selected_attribute + "}"}
|
147 |
)
|
148 |
|
|
|
149 |
st.pydeck_chart(r)
|
150 |
|
|
|
151 |
st.write(color_scale)
|
152 |
|
|
|
153 |
if st.checkbox("Show raw data"):
|
154 |
st.write(gdf[[selected_attribute, 'NAME']])
|
155 |
|
156 |
+
if __name__ == "__main__":
|
157 |
+
app()
|