|
import gradio |
|
import torchaudio |
|
from fastai.vision.all import * |
|
from fastai.learner import load_learner |
|
from torchvision.utils import save_image |
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
model = load_learner( |
|
hf_hub_download("kurianbenoy/music_genre_classification_baseline", "model.pkl") |
|
) |
|
|
|
EXAMPLES_PATH = Path("./examples") |
|
labels = model.dls.vocab |
|
|
|
interface_options = { |
|
"title": "Music Genre Classification", |
|
"description": "A simple baseline model for classifying music genres with fast.ai on [Kaggle competition data](https://www.kaggle.com/competitions/kaggle-pog-series-s01e02/data)", |
|
"examples": [f"{EXAMPLES_PATH}/{f.name}" for f in EXAMPLES_PATH.iterdir()], |
|
"interpretation": "default", |
|
"layout": "horizontal", |
|
"theme": "default", |
|
} |
|
|
|
|
|
def predict(img): |
|
img = PILImage.create(img) |
|
_pred, _pred_w_idx, probs = model.predict(img) |
|
labels_probs = {labels[i]: float(probs[i]) for i, _ in enumerate(labels)} |
|
return labels_probs |
|
|
|
|
|
demo = gradio.Interface( |
|
fn=predict, |
|
inputs=gradio.inputs.Image(shape=(512, 512)), |
|
outputs=gradio.outputs.Label(num_top_classes=5), |
|
) |
|
|
|
launch_options = { |
|
"enable_queue": True, |
|
"share": False, |
|
} |
|
|
|
demo.launch(**launch_options) |
|
|