katerinavr
Add requirements
a113671
raw
history blame
3.43 kB
import gradio as gr
from transformers import CLIPProcessor, CLIPModel, CLIPTokenizer
import sentence_transformers
from sentence_transformers import SentenceTransformer, util
import pickle
from PIL import Image
import os
from datasets import load_dataset
from huggingface_hub.hf_api import HfFolder
from sentence_transformers import SentenceTransformer, util
HfFolder.save_token('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')
## Define model
# model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
# processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
# tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
from sentence_transformers import SentenceTransformer, util
model = SentenceTransformer('clip-ViT-B-32')
#Open the precomputed embeddings
#emb_filename = 'unsplash-25k-photos-embeddings.pkl'
ds_with_embeddings = load_dataset("kvriza8/image-embeddings", use_auth_token=True)
# img_names, img_emb = ds_with_embeddings['train']['image'], ds_with_embeddings['train']['embeddings']
# with open(emb_filename, 'rb') as fIn:
# img_names, img_emb = pickle.load(fIn)
# #print(f'img_emb: {print(img_emb)}')
# #print(f'img_names: {print(img_names)}')
def search_text(query, top_k=1):
"""" Search an image based on the text query.
Args:
query ([string]): [query you want search for]
top_k (int, optional): [Amount of images o return]. Defaults to 1.
Returns:
[list]: [list of images that are related to the query.]
"""
# First, we encode the query.
inputs = tokenizer([query], padding=True, return_tensors="pt")
query_emb = model.get_text_features(**inputs)
# Then, we use the util.semantic_search function, which computes the cosine-similarity
# between the query embedding and all image embeddings.
# It then returns the top_k highest ranked images, which we output
hits = util.semantic_search(query_emb, img_emb, top_k=top_k)[0]
image=[]
for hit in hits:
#print(img_names[hit['corpus_id']])
object = Image.open(os.path.join("photos/", img_names[hit['corpus_id']]))
image.append(object)
#print(f'array length is: {len(image)}')
return image
def get_image_from_text(text_prompt, number_to_retrieve=6):
prompt = model.encode(text_prompt)
ds_with_embeddings['train'].add_faiss_index(column='embeddings')
scores, retrieved_examples = ds_with_embeddings['train'].get_nearest_examples('embeddings', prompt,k=number_to_retrieve)
return retrieved_examples
# plt.figure(figsize=(15, 15))
# columns = 3
# for i in range(8):
# print('title', retrieved_examples['caption_summary'][i])
# image = retrieved_examples['image'][i]
# plt.title(retrieved_examples['caption_summary'][i])
# plt.imshow(image)
# plt.subplot(2, 3, i+1 )
iface = gr.Interface(
title = "Text to Image using CLIP Model ๐Ÿ“ธ",
description = 'test',
article = "text",
fn=get_image_from_text,
inputs=[gr.Textbox(lines=4,
label="Insert your prompt",
placeholder="Text Here..."),
gr.Slider(0, 5, step=1)],
outputs=[gr.Gallery(
label="Retrieved images", show_label=False, elem_id="gallery"
)],
examples=[[("TEM image"), 2],
[("Nanoparticles"), 1],
[("ZnSe-ZnTe core-shell nanowire"), 2]]
).launch(debug=True)