Spaces:
Configuration error
Configuration error
File size: 14,210 Bytes
94d1117 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
import logging
import multiprocessing
import os
import time
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.cuda.amp import GradScaler, autocast
from torch.nn import functional as F
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import modules.commons as commons
import utils
from data_utils import TextAudioCollate, TextAudioSpeakerLoader
from models import (
MultiPeriodDiscriminator,
SynthesizerTrn,
)
from modules.losses import discriminator_loss, feature_loss, generator_loss, kl_loss
from modules.mel_processing import mel_spectrogram_torch, spec_to_mel_torch
logging.getLogger('matplotlib').setLevel(logging.WARNING)
logging.getLogger('numba').setLevel(logging.WARNING)
torch.backends.cudnn.benchmark = True
global_step = 0
start_time = time.time()
# os.environ['TORCH_DISTRIBUTED_DEBUG'] = 'INFO'
def main():
"""Assume Single Node Multi GPUs Training Only"""
assert torch.cuda.is_available(), "CPU training is not allowed."
hps = utils.get_hparams()
n_gpus = torch.cuda.device_count()
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = hps.train.port
mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
def run(rank, n_gpus, hps):
global global_step
if rank == 0:
logger = utils.get_logger(hps.model_dir)
logger.info(hps)
utils.check_git_hash(hps.model_dir)
writer = SummaryWriter(log_dir=hps.model_dir)
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
# for pytorch on win, backend use gloo
dist.init_process_group(backend= 'gloo' if os.name == 'nt' else 'nccl', init_method='env://', world_size=n_gpus, rank=rank)
torch.manual_seed(hps.train.seed)
torch.cuda.set_device(rank)
collate_fn = TextAudioCollate()
all_in_mem = hps.train.all_in_mem # If you have enough memory, turn on this option to avoid disk IO and speed up training.
train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps, all_in_mem=all_in_mem)
num_workers = 5 if multiprocessing.cpu_count() > 4 else multiprocessing.cpu_count()
if all_in_mem:
num_workers = 0
train_loader = DataLoader(train_dataset, num_workers=num_workers, shuffle=False, pin_memory=True,
batch_size=hps.train.batch_size, collate_fn=collate_fn)
if rank == 0:
eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps, all_in_mem=all_in_mem,vol_aug = False)
eval_loader = DataLoader(eval_dataset, num_workers=1, shuffle=False,
batch_size=1, pin_memory=False,
drop_last=False, collate_fn=collate_fn)
net_g = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model).cuda(rank)
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
optim_g = torch.optim.AdamW(
net_g.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps)
optim_d = torch.optim.AdamW(
net_d.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps)
net_g = DDP(net_g, device_ids=[rank]) # , find_unused_parameters=True)
net_d = DDP(net_d, device_ids=[rank])
skip_optimizer = False
try:
_, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g,
optim_g, skip_optimizer)
_, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d,
optim_d, skip_optimizer)
epoch_str = max(epoch_str, 1)
name=utils.latest_checkpoint_path(hps.model_dir, "D_*.pth")
global_step=int(name[name.rfind("_")+1:name.rfind(".")])+1
#global_step = (epoch_str - 1) * len(train_loader)
except Exception:
print("load old checkpoint failed...")
epoch_str = 1
global_step = 0
if skip_optimizer:
epoch_str = 1
global_step = 0
warmup_epoch = hps.train.warmup_epochs
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
scaler = GradScaler(enabled=hps.train.fp16_run)
for epoch in range(epoch_str, hps.train.epochs + 1):
# set up warm-up learning rate
if epoch <= warmup_epoch:
for param_group in optim_g.param_groups:
param_group['lr'] = hps.train.learning_rate / warmup_epoch * epoch
for param_group in optim_d.param_groups:
param_group['lr'] = hps.train.learning_rate / warmup_epoch * epoch
# training
if rank == 0:
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler,
[train_loader, eval_loader], logger, [writer, writer_eval])
else:
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler,
[train_loader, None], None, None)
# update learning rate
scheduler_g.step()
scheduler_d.step()
def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
net_g, net_d = nets
optim_g, optim_d = optims
scheduler_g, scheduler_d = schedulers
train_loader, eval_loader = loaders
if writers is not None:
writer, writer_eval = writers
half_type = torch.bfloat16 if hps.train.half_type=="bf16" else torch.float16
# train_loader.batch_sampler.set_epoch(epoch)
global global_step
net_g.train()
net_d.train()
for batch_idx, items in enumerate(train_loader):
c, f0, spec, y, spk, lengths, uv,volume = items
g = spk.cuda(rank, non_blocking=True)
spec, y = spec.cuda(rank, non_blocking=True), y.cuda(rank, non_blocking=True)
c = c.cuda(rank, non_blocking=True)
f0 = f0.cuda(rank, non_blocking=True)
uv = uv.cuda(rank, non_blocking=True)
lengths = lengths.cuda(rank, non_blocking=True)
mel = spec_to_mel_torch(
spec,
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.mel_fmin,
hps.data.mel_fmax)
with autocast(enabled=hps.train.fp16_run, dtype=half_type):
y_hat, ids_slice, z_mask, \
(z, z_p, m_p, logs_p, m_q, logs_q), pred_lf0, norm_lf0, lf0 = net_g(c, f0, uv, spec, g=g, c_lengths=lengths,
spec_lengths=lengths,vol = volume)
y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
y_hat_mel = mel_spectrogram_torch(
y_hat.squeeze(1),
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
hps.data.mel_fmin,
hps.data.mel_fmax
)
y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
# Discriminator
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
with autocast(enabled=False, dtype=half_type):
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
loss_disc_all = loss_disc
optim_d.zero_grad()
scaler.scale(loss_disc_all).backward()
scaler.unscale_(optim_d)
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
scaler.step(optim_d)
with autocast(enabled=hps.train.fp16_run, dtype=half_type):
# Generator
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
with autocast(enabled=False, dtype=half_type):
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
loss_fm = feature_loss(fmap_r, fmap_g)
loss_gen, losses_gen = generator_loss(y_d_hat_g)
loss_lf0 = F.mse_loss(pred_lf0, lf0) if net_g.module.use_automatic_f0_prediction else 0
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl + loss_lf0
optim_g.zero_grad()
scaler.scale(loss_gen_all).backward()
scaler.unscale_(optim_g)
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
scaler.step(optim_g)
scaler.update()
if rank == 0:
if global_step % hps.train.log_interval == 0:
lr = optim_g.param_groups[0]['lr']
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_kl]
reference_loss=0
for i in losses:
reference_loss += i
logger.info('Train Epoch: {} [{:.0f}%]'.format(
epoch,
100. * batch_idx / len(train_loader)))
logger.info(f"Losses: {[x.item() for x in losses]}, step: {global_step}, lr: {lr}, reference_loss: {reference_loss}")
scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr,
"grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/kl": loss_kl,
"loss/g/lf0": loss_lf0})
# scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
# scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
# scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
image_dict = {
"slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
"slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
"all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy())
}
if net_g.module.use_automatic_f0_prediction:
image_dict.update({
"all/lf0": utils.plot_data_to_numpy(lf0[0, 0, :].cpu().numpy(),
pred_lf0[0, 0, :].detach().cpu().numpy()),
"all/norm_lf0": utils.plot_data_to_numpy(lf0[0, 0, :].cpu().numpy(),
norm_lf0[0, 0, :].detach().cpu().numpy())
})
utils.summarize(
writer=writer,
global_step=global_step,
images=image_dict,
scalars=scalar_dict
)
if global_step % hps.train.eval_interval == 0:
evaluate(hps, net_g, eval_loader, writer_eval)
utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch,
os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch,
os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
keep_ckpts = getattr(hps.train, 'keep_ckpts', 0)
if keep_ckpts > 0:
utils.clean_checkpoints(path_to_models=hps.model_dir, n_ckpts_to_keep=keep_ckpts, sort_by_time=True)
global_step += 1
if rank == 0:
global start_time
now = time.time()
durtaion = format(now - start_time, '.2f')
logger.info(f'====> Epoch: {epoch}, cost {durtaion} s')
start_time = now
def evaluate(hps, generator, eval_loader, writer_eval):
generator.eval()
image_dict = {}
audio_dict = {}
with torch.no_grad():
for batch_idx, items in enumerate(eval_loader):
c, f0, spec, y, spk, _, uv,volume = items
g = spk[:1].cuda(0)
spec, y = spec[:1].cuda(0), y[:1].cuda(0)
c = c[:1].cuda(0)
f0 = f0[:1].cuda(0)
uv= uv[:1].cuda(0)
if volume is not None:
volume = volume[:1].cuda(0)
mel = spec_to_mel_torch(
spec,
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.mel_fmin,
hps.data.mel_fmax)
y_hat,_ = generator.module.infer(c, f0, uv, g=g,vol = volume)
y_hat_mel = mel_spectrogram_torch(
y_hat.squeeze(1).float(),
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
hps.data.mel_fmin,
hps.data.mel_fmax
)
audio_dict.update({
f"gen/audio_{batch_idx}": y_hat[0],
f"gt/audio_{batch_idx}": y[0]
})
image_dict.update({
"gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy()),
"gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())
})
utils.summarize(
writer=writer_eval,
global_step=global_step,
images=image_dict,
audios=audio_dict,
audio_sampling_rate=hps.data.sampling_rate
)
generator.train()
if __name__ == "__main__":
main() |