Spaces:
Configuration error
Configuration error
import json | |
import torch | |
import utils | |
from onnxexport.model_onnx_speaker_mix import SynthesizerTrn | |
def main(path, config, model): | |
#path = "crs" | |
device = torch.device("cpu") | |
hps = utils.get_hparams_from_file(f"checkpoints/{path}/{config}") | |
SVCVITS = SynthesizerTrn( | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
**hps.model) | |
_ = utils.load_checkpoint(f"checkpoints/{path}/{model}", SVCVITS, None) | |
_ = SVCVITS.eval().to(device) | |
for i in SVCVITS.parameters(): | |
i.requires_grad = False | |
num_frames = 200 | |
test_hidden_unit = torch.rand(1, num_frames, SVCVITS.gin_channels) | |
test_pitch = torch.rand(1, num_frames) | |
test_vol = torch.rand(1, num_frames) | |
test_mel2ph = torch.LongTensor(torch.arange(0, num_frames)).unsqueeze(0) | |
test_uv = torch.ones(1, num_frames, dtype=torch.float32) | |
test_noise = torch.randn(1, 192, num_frames) | |
test_sid = torch.LongTensor([0]) | |
export_mix = True | |
if len(hps.spk) < 2: | |
export_mix = False | |
if export_mix: | |
spk_mix = [] | |
n_spk = len(hps.spk) | |
for i in range(n_spk): | |
spk_mix.append(1.0/float(n_spk)) | |
test_sid = torch.tensor(spk_mix) | |
SVCVITS.export_chara_mix(hps.spk) | |
test_sid = test_sid.unsqueeze(0) | |
test_sid = test_sid.repeat(num_frames, 1) | |
SVCVITS.eval() | |
if export_mix: | |
daxes = { | |
"c": [0, 1], | |
"f0": [1], | |
"mel2ph": [1], | |
"uv": [1], | |
"noise": [2], | |
"sid":[0] | |
} | |
else: | |
daxes = { | |
"c": [0, 1], | |
"f0": [1], | |
"mel2ph": [1], | |
"uv": [1], | |
"noise": [2] | |
} | |
input_names = ["c", "f0", "mel2ph", "uv", "noise", "sid"] | |
output_names = ["audio", ] | |
if SVCVITS.vol_embedding: | |
input_names.append("vol") | |
vol_dadict = {"vol" : [1]} | |
daxes.update(vol_dadict) | |
test_inputs = ( | |
test_hidden_unit.to(device), | |
test_pitch.to(device), | |
test_mel2ph.to(device), | |
test_uv.to(device), | |
test_noise.to(device), | |
test_sid.to(device), | |
test_vol.to(device) | |
) | |
else: | |
test_inputs = ( | |
test_hidden_unit.to(device), | |
test_pitch.to(device), | |
test_mel2ph.to(device), | |
test_uv.to(device), | |
test_noise.to(device), | |
test_sid.to(device) | |
) | |
# SVCVITS = torch.jit.script(SVCVITS) | |
SVCVITS(test_hidden_unit.to(device), | |
test_pitch.to(device), | |
test_mel2ph.to(device), | |
test_uv.to(device), | |
test_noise.to(device), | |
test_sid.to(device), | |
test_vol.to(device)) | |
SVCVITS.dec.OnnxExport() | |
torch.onnx.export( | |
SVCVITS, | |
test_inputs, | |
f"checkpoints/{path}/{path}_SoVits.onnx", | |
dynamic_axes=daxes, | |
do_constant_folding=False, | |
opset_version=16, | |
verbose=False, | |
input_names=input_names, | |
output_names=output_names | |
) | |
vec_lay = "layer-12" if SVCVITS.gin_channels == 768 else "layer-9" | |
spklist = [] | |
for key in hps.spk.keys(): | |
spklist.append(key) | |
MoeVSConf = { | |
"Folder" : f"{path}", | |
"Name" : f"{path}", | |
"Type" : "SoVits", | |
"Rate" : hps.data.sampling_rate, | |
"Hop" : hps.data.hop_length, | |
"Hubert": f"vec-{SVCVITS.gin_channels}-{vec_lay}", | |
"SoVits4": True, | |
"SoVits3": False, | |
"CharaMix": export_mix, | |
"Volume": SVCVITS.vol_embedding, | |
"HiddenSize": SVCVITS.gin_channels, | |
"Characters": spklist | |
} | |
with open(f"checkpoints/{path}/{model}_MoeVS.json", 'w') as MoeVsConfFile: | |
json.dump(MoeVSConf, MoeVsConfFile, indent = 4) | |
if __name__ == '__main__': | |
import argparse | |
parser = argparse.ArgumentParser() | |
parser.add_argument('-p', '--path', type=str, default="crs") | |
parser.add_argument('-c', '--config', type=str, default='config.json') | |
parser.add_argument('-m', '--model', type=str, default='model.pth') | |
args = parser.parse_args() | |
path = args.path | |
config = args.config | |
model = args.model | |
main(path, config, model) | |