File size: 13,507 Bytes
e371ddd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import os
import numpy as np
import trimesh
import open3d as o3d
from metrics import chamfer, compute_iou
from tqdm import tqdm
# seed
np.random.seed(0)

def cartesian_to_spherical(xyz):
    ptsnew = np.hstack((xyz, np.zeros(xyz.shape)))
    xy = xyz[:, 0] ** 2 + xyz[:, 1] ** 2
    z = np.sqrt(xy + xyz[:, 2] ** 2)
    theta = np.arctan2(np.sqrt(xy), xyz[:, 2])  # for elevation angle defined from Z-axis down
    # ptsnew[:,4] = np.arctan2(xyz[:,2], np.sqrt(xy)) # for elevation angle defined from XY-plane up
    azimuth = np.arctan2(xyz[:, 1], xyz[:, 0])
    return np.array([theta, azimuth, z])

def get_pose(target_RT):
    R, T = target_RT[:3, :3], target_RT[:, -1]
    T_target = -R.T @ T
    theta_target, azimuth_target, z_target = cartesian_to_spherical(T_target[None, :])
    return theta_target, azimuth_target, z_target

def trimesh_to_open3d(src):
    dst = o3d.geometry.TriangleMesh()
    dst.vertices = o3d.utility.Vector3dVector(src.vertices)
    dst.triangles = o3d.utility.Vector3iVector(src.faces)
    vertex_colors = src.visual.vertex_colors[:, :3].astype(np.float32) / 255.0
    dst.vertex_colors = o3d.utility.Vector3dVector(vertex_colors)
    dst.compute_vertex_normals()

    return dst

def normalize_mesh(vertices):
    max_pt = np.max(vertices, 0)
    min_pt = np.min(vertices, 0)
    scale = 1 / np.max(max_pt - min_pt)
    vertices = vertices * scale

    max_pt = np.max(vertices, 0)
    min_pt = np.min(vertices, 0)
    center = (max_pt + min_pt) / 2
    vertices = vertices - center[None, :]
    return vertices

def capture_screenshots(mesh_rec_o3d, cam_param, render_param, img_name):
    vis = o3d.visualization.Visualizer()
    vis.create_window(width=512, height=512, visible=False)
    vis.add_geometry(mesh_rec_o3d)
    ctr = vis.get_view_control()
    parameters = o3d.io.read_pinhole_camera_parameters(cam_param)
    ctr.convert_from_pinhole_camera_parameters(parameters, allow_arbitrary=True)
    vis.get_render_option().load_from_json(render_param)  # rgb
    vis.poll_events()
    vis.update_renderer()
    vis.capture_screen_image(img_name, do_render=True)
    vis.destroy_window()
    del vis
    del ctr


def vis_3D_rec(GT_DIR, REC_DIR, method_name):
    N = 4096
    # get all folders
    obj_names = [f for f in os.listdir(GT_DIR) if os.path.isdir(os.path.join(GT_DIR, f))]

    CDs = []
    IoUs = []
    for obj_name in tqdm(obj_names):
        print(obj_name)
        gt_meshfile = os.path.join(GT_DIR, obj_name, "meshes", "model.obj")
        if "ours" in REC_DIR:
            condition_pose = np.load(os.path.join(GT_DIR, obj_name, "render_sync_36_single/model/000.npy"))
        else:
            condition_pose = np.load(os.path.join(GT_DIR, obj_name, "render_mvs_25/model/000.npy"))
            condition_pose = np.concatenate([condition_pose, np.array([[0, 0, 0, 1]])], axis=0)
        theta, azimu, radius = get_pose(condition_pose[:3, :])

        if "PointE" in REC_DIR:
            rec_pcfile = os.path.join(REC_DIR, obj_name, "pc.ply")
        if "RealFusion" in REC_DIR:
            rec_meshfile = os.path.join(REC_DIR, obj_name, "mesh/mesh.obj")
        elif "dreamgaussian" in REC_DIR:
            rec_meshfile = os.path.join(REC_DIR, obj_name+".obj")
        elif "Wonder3D" in REC_DIR:
            rec_meshfile = os.path.join(REC_DIR, "mesh-ortho-"+obj_name, "save/it3000-mc192.obj")
        else:
            rec_meshfile = os.path.join(REC_DIR, obj_name, "mesh.ply")



        mesh_gt = trimesh.load(gt_meshfile)
        mesh_gt_o3d = o3d.io.read_triangle_mesh(gt_meshfile, True)

        # trimesh load point cloud
        if "PointE" in REC_DIR:
            pc_rec = trimesh.load(rec_pcfile)

        if method_name == "GT":
            mesh_rec = trimesh.load(gt_meshfile)
            mesh_rec_o3d = o3d.io.read_triangle_mesh(gt_meshfile, True)
        else:
            mesh_rec = trimesh.load(rec_meshfile)
            mesh_rec_o3d = o3d.io.read_triangle_mesh(rec_meshfile, True)

        # normalize
        mesh_gt.vertices = normalize_mesh(mesh_gt.vertices)
        vertices_gt = np.asarray(mesh_gt_o3d.vertices)
        vertices_gt = normalize_mesh(vertices_gt)
        mesh_gt_o3d.vertices = o3d.utility.Vector3dVector(vertices_gt)


        if "PointE" in REC_DIR:
            pc_rec.vertices = normalize_mesh(pc_rec.vertices)

        # normalize
        mesh_rec.vertices = normalize_mesh(mesh_rec.vertices)
        vertices_rec = np.asarray(mesh_rec_o3d.vertices)
        vertices_rec = normalize_mesh(vertices_rec)
        mesh_rec_o3d.vertices = o3d.utility.Vector3dVector(vertices_rec)


        if "RealFusion" in REC_DIR or "Wonder3D_ours" in REC_DIR or "SyncDreamer" in REC_DIR:
            mesh_rec.vertices = trimesh.transformations.rotation_matrix(azimu[0], [0, 0, 1])[:3, :3].dot(
                mesh_rec.vertices.T).T
            # o3d
            R = mesh_rec_o3d.get_rotation_matrix_from_xyz(np.array([0., 0., azimu[0]]))
            mesh_rec_o3d.rotate(R, center=(0, 0, 0))
        elif "dreamgaussian" in REC_DIR:
            mesh_rec.vertices = trimesh.transformations.rotation_matrix(azimu[0]+np.pi/2, [0, 1, 0])[:3, :3].dot(
                mesh_rec.vertices.T).T
            # rotate 90 along x
            mesh_rec.vertices = trimesh.transformations.rotation_matrix(np.pi/2, [1, 0, 0])[:3, :3].dot(
                mesh_rec.vertices.T).T
            # o3d
            R = mesh_rec_o3d.get_rotation_matrix_from_xyz(np.array([0., azimu[0]+np.pi/2, 0.]))
            mesh_rec_o3d.rotate(R, center=(0, 0, 0))
            R = mesh_rec_o3d.get_rotation_matrix_from_xyz(np.array([np.pi/2, 0., 0.]))
            mesh_rec_o3d.rotate(R, center=(0, 0, 0))
        elif "one2345" in REC_DIR:
            # rotate along z axis by azimu degree
            # mesh_rec.apply_transform(trimesh.transformations.rotation_matrix(-azimu, [0, 0, 1]))
            azimu = np.rad2deg(azimu[0])
            azimu += 60 # https://github.com/One-2-3-45/One-2-3-45/issues/26
            # print("azimu", azimu)
            mesh_rec.vertices = trimesh.transformations.rotation_matrix(np.radians(azimu), [0, 0, 1])[:3, :3].dot(mesh_rec.vertices.T).T
            # # scale again
            # mesh_rec, rec_center, rec_scale = normalize_mesh(mesh_rec)
            # o3d
            R = mesh_rec_o3d.get_rotation_matrix_from_xyz(np.array([0., 0., np.radians(azimu)]))
            mesh_rec_o3d.rotate(R, center=(0, 0, 0))
            # # scale again
            # mesh_rec_o3d = mesh_rec_o3d.translate(-rec_center)
            # mesh_rec_o3d = mesh_rec_o3d.scale(1 / rec_scale, [0, 0, 0])
        elif "PointE" in REC_DIR or "ShapeE" in REC_DIR:
            # sample points from rec_pc
            if "PointE" in REC_DIR:
                rec_pc_tri = pc_rec
                rec_pc_tri.vertices = rec_pc_tri.vertices[np.random.choice(np.arange(len(pc_rec.vertices)), N)]
            else:
                rec_pc = trimesh.sample.sample_surface(mesh_rec, N)
                rec_pc_tri = trimesh.PointCloud(vertices=rec_pc[0])

            gt_pc = trimesh.sample.sample_surface(mesh_gt, N)
            gt_pc_tri = trimesh.PointCloud(vertices=gt_pc[0])
            # loop over all flips and 90 degrees rotations of rec_pc, pick the one with the smallest chamfer distance
            chamfer_dist_min = np.inf
            opt_axis = None
            opt_angle = None
            for axis in [[1, 0, 0], [0, 1, 0], [0, 0, 1]]:
                for angle in [0, 90, 180, 270]:
                    tmp_rec_pc_tri = rec_pc_tri.copy()
                    tmp_rec_pc_tri.vertices = trimesh.transformations.rotation_matrix(np.radians(angle), axis)[:3, :3].dot(tmp_rec_pc_tri.vertices.T).T
                    tmp_mesh_rec = mesh_rec.copy()
                    tmp_mesh_rec.vertices = trimesh.transformations.rotation_matrix(np.radians(angle), axis)[:3, :3].dot(tmp_mesh_rec.vertices.T).T
                    # compute chamfer distance
                    chamfer_dist = chamfer(gt_pc_tri.vertices, tmp_rec_pc_tri.vertices)
                    if chamfer_dist < chamfer_dist_min:
                        chamfer_dist_min = chamfer_dist
                        opt_axis = axis
                        opt_angle = angle

            chamfer_dist = chamfer_dist_min

            mesh_rec.vertices = trimesh.transformations.rotation_matrix(np.radians(opt_angle), opt_axis)[:3, :3].dot(mesh_rec.vertices.T).T
            # o3d
            if np.abs(opt_angle) > 1e-6:
                if opt_axis == [1, 0, 0]:
                    R = mesh_rec_o3d.get_rotation_matrix_from_xyz(np.array([np.radians(opt_angle), 0., 0.]))
                elif opt_axis == [0, 1, 0]:
                    R = mesh_rec_o3d.get_rotation_matrix_from_xyz(np.array([0., np.radians(opt_angle), 0.]))
                elif opt_axis == [0, 0, 1]:
                    R = mesh_rec_o3d.get_rotation_matrix_from_xyz(np.array([0., 0., np.radians(opt_angle)]))
                mesh_rec_o3d.rotate(R, center=(0, 0, 0))



        if "ours" in REC_DIR or "SyncDreamer" in REC_DIR:
            # invert the face
            mesh_rec.invert()
            # o3d Invert the mesh faces
            mesh_rec_o3d.triangles = o3d.utility.Vector3iVector(np.asarray(mesh_rec_o3d.triangles)[:, [0, 2, 1]])
            # Compute vertex normals to ensure correct orientation
            mesh_rec_o3d.compute_vertex_normals()




        # normalize
        mesh_rec.vertices = normalize_mesh(mesh_rec.vertices)
        vertices_rec = np.asarray(mesh_rec_o3d.vertices)
        vertices_rec = normalize_mesh(vertices_rec)
        mesh_rec_o3d.vertices = o3d.utility.Vector3dVector(vertices_rec)

        # print("mesh_gt_o3d ", np.asarray(mesh_gt_o3d.vertices).max(0), np.asarray(mesh_gt_o3d.vertices).min(0))
        # print("mesh_rec_o3d ", np.asarray(mesh_rec_o3d.vertices).max(0), np.asarray(mesh_rec_o3d.vertices).min(0))
        assert np.abs(np.asarray(mesh_gt_o3d.vertices)).max() <= 0.505
        assert np.abs(np.asarray(mesh_rec_o3d.vertices)).max() <= 0.505
        assert np.abs(np.asarray(mesh_gt.vertices)).max() <= 0.505
        assert np.abs(np.asarray(mesh_rec.vertices)).max() <= 0.505



        # compute chamfer distance
        chamfer_dist = chamfer(mesh_gt.vertices, mesh_rec.vertices)
        vol_iou = compute_iou(mesh_gt, mesh_rec)
        CDs.append(chamfer_dist)
        IoUs.append(vol_iou)

        # # todo save screenshots
        # mesh_axis = o3d.geometry.TriangleMesh.create_coordinate_frame(size=1.0, origin=[0, 0, 0])
        # # draw bbox for gt and rec
        # bbox_gt = mesh_gt.bounding_box.bounds
        # bbox_rec = mesh_rec.bounding_box.bounds
        # bbox_gt_o3d = o3d.geometry.AxisAlignedBoundingBox(min_bound=bbox_gt[0], max_bound=bbox_gt[1])
        # bbox_rec_o3d = o3d.geometry.AxisAlignedBoundingBox(min_bound=bbox_rec[0], max_bound=bbox_rec[1])
        # # color red for gt, green for rec
        # bbox_gt_o3d.color = (1, 0, 0)
        # bbox_rec_o3d.color = (0, 1, 0)
        # # draw a bbox of unit cube [-1, 1]^3
        # bbox_unit_cube = o3d.geometry.AxisAlignedBoundingBox(min_bound=(-1, -1, -1), max_bound=(1, 1, 1))
        # bbox_unit_cube.color = (0, 0, 1)
        #
        # # o3d.visualization.draw_geometries(
        # #     [mesh_axis, mesh_gt_o3d, mesh_rec_o3d, bbox_gt_o3d, bbox_rec_o3d, bbox_unit_cube])
        #
        # # take a screenshot with circle view and save to file
        # # save screenshot to file
        # vis_output = os.path.join("screenshots", method_name)
        # os.makedirs(vis_output, exist_ok=True)
        # mesh_rec_o3d.compute_vertex_normals()
        #
        # # vis = o3d.visualization.Visualizer()
        # # vis.create_window(width=512, height=512)
        # # vis.add_geometry(mesh_rec_o3d)
        # # # show the window and save camera pose to json file
        # # vis.get_render_option().light_on = True
        # # vis.run()
        #
        # # rgb
        # for i in range(6):
        #     capture_screenshots(mesh_rec_o3d, f"ScreenCamera_{i}.json", "RenderOption_rgb.json", os.path.join(vis_output, obj_name + f"_{i}.png"))
        # # phong shading
        # for i in range(6):
        #     capture_screenshots(mesh_rec_o3d, f"ScreenCamera_{i}.json", "RenderOption_phong.json", os.path.join(vis_output, obj_name + f"_{i}_phong.png"))


        # todo 3D metrics
        # save metrics to a single file
        with open(os.path.join(REC_DIR, "metrics3D.txt"), "a") as f:
            # write metrics in one line with format: obj_name chamfer_dist volume_iou
            f.write(obj_name + " CD:" + str(chamfer_dist) + " IoU:" + str(vol_iou) + "\n")

    # average metrics and save to the file
    print("Average CD:", np.mean(CDs))
    print("Average IoU:", np.mean(IoUs))
    with open(os.path.join(REC_DIR, "metrics3D.txt"), "a") as f:
        f.write("Average CD:" + str(np.mean(CDs)) + " IoU:" + str(np.mean(IoUs)) + "\n")


### TODO
GT_DIR = "/home/xin/data/EscherNet/Data/GSO30/"
methods = {}
# methods["One2345-XL"] = ""
# methods["One2345"] = ""
# methods["PointE"] = ""
# methods["ShapeE"] = ""
# methods["DreamGaussian"] = ""
# methods["DreamGaussian-XL"] = ""
# methods["SyncDreamer"] = ""
methods["Ours_T1"] = "/GSO3D/ours_GSO_T1/NeuS/"
methods["Ours_T2"] = "/GSO3D/ours_GSO_T2/NeuS/"
methods["Ours_T3"] = "/GSO3D/ours_GSO_T3/NeuS/"
methods["Ours_T5"] = "/GSO3D/ours_GSO_T5/NeuS/"
methods["Ours_T10"] = "/GSO3D/ours_GSO_T10/NeuS"

for method_name in methods.keys():
    print("method_name: ", method_name)
    vis_3D_rec(GT_DIR, methods[method_name], method_name)