Spaces:
Build error
Build error
kyleledbetter
commited on
Commit
•
438c90e
1
Parent(s):
992bd55
feat(): Initial app commit
Browse files
app.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import json
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
+
import plotly.graph_objects as go
|
5 |
+
import plotly.express as px
|
6 |
+
import pandas as pd
|
7 |
+
from sklearn.metrics import confusion_matrix
|
8 |
+
from datasets import load_dataset
|
9 |
+
|
10 |
+
|
11 |
+
def load_model(endpoint: str):
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(endpoint)
|
13 |
+
model = AutoModelForSequenceClassification.from_pretrained(endpoint)
|
14 |
+
return tokenizer, model
|
15 |
+
|
16 |
+
|
17 |
+
def test_model(tokenizer, model, test_data: list, label_map: dict):
|
18 |
+
results = []
|
19 |
+
for text, true_label in test_data:
|
20 |
+
inputs = tokenizer(text, return_tensors="pt",
|
21 |
+
truncation=True, padding=True)
|
22 |
+
outputs = model(**inputs)
|
23 |
+
pred_label = label_map[int(outputs.logits.argmax(dim=-1))]
|
24 |
+
results.append((text, true_label, pred_label))
|
25 |
+
return results
|
26 |
+
|
27 |
+
|
28 |
+
def generate_report_card(results, label_map):
|
29 |
+
true_labels = [r[1] for r in results]
|
30 |
+
pred_labels = [r[2] for r in results]
|
31 |
+
|
32 |
+
cm = confusion_matrix(true_labels, pred_labels,
|
33 |
+
labels=list(label_map.values()))
|
34 |
+
|
35 |
+
fig = go.Figure(
|
36 |
+
data=go.Heatmap(
|
37 |
+
z=cm,
|
38 |
+
x=list(label_map.values()),
|
39 |
+
y=list(label_map.values()),
|
40 |
+
colorscale='Viridis',
|
41 |
+
colorbar=dict(title='Number of Samples')
|
42 |
+
),
|
43 |
+
layout=go.Layout(
|
44 |
+
title='Confusion Matrix',
|
45 |
+
xaxis=dict(title='Predicted Labels'),
|
46 |
+
yaxis=dict(title='True Labels', autorange='reversed')
|
47 |
+
)
|
48 |
+
)
|
49 |
+
|
50 |
+
fig.show()
|
51 |
+
|
52 |
+
|
53 |
+
def load_sst2_data(split="test"):
|
54 |
+
dataset = load_dataset("glue", "sst2", split=split)
|
55 |
+
data = [(item["sentence"], "positive" if item["label"] == 1 else "negative")
|
56 |
+
for item in dataset]
|
57 |
+
return data
|
58 |
+
|
59 |
+
|
60 |
+
# Define your model endpoint and label map
|
61 |
+
# model_endpoint = "your-model-endpoint"
|
62 |
+
|
63 |
+
# Modify this according to your model's labels
|
64 |
+
# label_map = {0: "label0", 1: "label1"}
|
65 |
+
|
66 |
+
model_endpoint = "distilbert-base-uncased-finetuned-sst-2-english"
|
67 |
+
label_map = {0: "negative", 1: "positive"}
|
68 |
+
|
69 |
+
# Load the model and tokenizer
|
70 |
+
tokenizer, model = load_model(model_endpoint)
|
71 |
+
|
72 |
+
# Prepare your test data (list of tuples containing text and true label)
|
73 |
+
#test_data = [
|
74 |
+
# ("Sample text 1", "label0"),
|
75 |
+
# ("Sample text 2", "label1"),
|
76 |
+
# # Add more test samples here
|
77 |
+
#]
|
78 |
+
|
79 |
+
# Load the test data from the SST-2 dataset
|
80 |
+
test_data = load_sst2_data()
|
81 |
+
# Use a smaller subset of test_data for a quicker demonstration (optional)
|
82 |
+
test_data = test_data[:100]
|
83 |
+
|
84 |
+
# Test the model and generate results
|
85 |
+
results = test_model(tokenizer, model, test_data, label_map)
|
86 |
+
|
87 |
+
# Generate the visual report card
|
88 |
+
generate_report_card(results, label_map)
|