Spaces:
Build error
Build error
kyleledbetter
commited on
Commit
•
a5ba058
1
Parent(s):
6784da7
feat(app): gpt, dashboard, and dark mode
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
import requests
|
3 |
import json
|
4 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelForQuestionAnswering
|
5 |
|
6 |
from datasets import load_dataset
|
7 |
import datasets
|
@@ -70,6 +70,7 @@ def generate_label_map(dataset):
|
|
70 |
label_map = {i: label for i, label in enumerate(set(dataset["label"]))}
|
71 |
return label_map
|
72 |
|
|
|
73 |
def calculate_fairness_score(results, label_map):
|
74 |
true_labels = [r[1] for r in results]
|
75 |
pred_labels = [r[2] for r in results]
|
@@ -88,7 +89,7 @@ def calculate_fairness_score(results, label_map):
|
|
88 |
cm = confusion_matrix(true_group_labels, pred_group_labels, labels=list(group_names))
|
89 |
group_cms[group] = cm
|
90 |
|
91 |
-
# Calculate fairness score
|
92 |
score = 0
|
93 |
for i, group1 in enumerate(group_names):
|
94 |
for j, group2 in enumerate(group_names):
|
@@ -100,6 +101,7 @@ def calculate_fairness_score(results, label_map):
|
|
100 |
|
101 |
return accuracy, score
|
102 |
|
|
|
103 |
def calculate_per_class_metrics(true_labels, pred_labels, label_map, metric='accuracy'):
|
104 |
unique_labels = sorted(label_map.values())
|
105 |
metrics = []
|
@@ -119,12 +121,31 @@ def calculate_per_class_metrics(true_labels, pred_labels, label_map, metric='acc
|
|
119 |
|
120 |
return metrics
|
121 |
|
122 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
true_labels = [r[1] for r in results]
|
124 |
pred_labels = [r[2] for r in results]
|
|
|
|
|
|
|
125 |
|
126 |
if visualization_type == "confusion_matrix":
|
127 |
-
return generate_report_card(results, label_map)["fig"]
|
128 |
elif visualization_type == "per_class_accuracy":
|
129 |
per_class_accuracy = calculate_per_class_metrics(
|
130 |
true_labels, pred_labels, label_map, metric='accuracy')
|
@@ -139,8 +160,17 @@ def generate_visualization(visualization_type, results, label_map):
|
|
139 |
marker_color=colors[i % len(colors)]
|
140 |
))
|
141 |
|
142 |
-
fig.
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
return fig
|
145 |
elif visualization_type == "per_class_f1":
|
146 |
per_class_f1 = calculate_per_class_metrics(
|
@@ -156,35 +186,107 @@ def generate_visualization(visualization_type, results, label_map):
|
|
156 |
marker_color=colors[i % len(colors)]
|
157 |
))
|
158 |
|
159 |
-
fig.
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
return fig
|
|
|
|
|
162 |
else:
|
163 |
raise ValueError(f"Invalid visualization type: {visualization_type}")
|
164 |
|
165 |
-
|
166 |
-
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
true_labels = [r[1] for r in results]
|
169 |
pred_labels = [r[2] for r in results]
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
fig.update_layout(
|
|
|
|
|
|
|
184 |
height=500, width=600,
|
185 |
title='Confusion Matrix',
|
186 |
xaxis=dict(title='Predicted Labels'),
|
187 |
-
yaxis=dict(title='True Labels'
|
188 |
)
|
189 |
|
190 |
# Create the text output
|
@@ -197,31 +299,6 @@ def generate_report_card(results, label_map):
|
|
197 |
per_class_f1 = calculate_per_class_metrics(
|
198 |
true_labels, pred_labels, label_map, metric='f1')
|
199 |
|
200 |
-
|
201 |
-
text_output = html.Div(children=[
|
202 |
-
html.H2('Performance Metrics'),
|
203 |
-
html.Div(children=[
|
204 |
-
html.Div(children=[
|
205 |
-
html.H3('Accuracy'),
|
206 |
-
html.H4(f'{accuracy}')
|
207 |
-
], className='metric'),
|
208 |
-
html.Div(children=[
|
209 |
-
html.H3('Fairness Score'),
|
210 |
-
# html.H4(f'{fairness_score}')
|
211 |
-
html.H4(
|
212 |
-
f'Accuracy: {fairness_score[0]:.2f}, Score: {fairness_score[1]:.2f}')
|
213 |
-
], className='metric'),
|
214 |
-
], className='metric-container'),
|
215 |
-
], className='text-output')
|
216 |
-
|
217 |
-
# Combine the plot and text output into a Dash container
|
218 |
-
# report_card = html.Div([
|
219 |
-
# dcc.Graph(figure=fig),
|
220 |
-
# text_output,
|
221 |
-
# ])
|
222 |
-
|
223 |
-
# return report_card
|
224 |
-
|
225 |
report_card = {
|
226 |
"fig": fig,
|
227 |
"accuracy": accuracy,
|
@@ -232,9 +309,26 @@ def generate_report_card(results, label_map):
|
|
232 |
return report_card
|
233 |
|
234 |
# return fig, text_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
|
236 |
|
237 |
-
|
|
|
|
|
|
|
|
|
|
|
238 |
tokenizer, model = load_model(
|
239 |
model_type, model_name_or_path, dataset_name, config_name)
|
240 |
|
@@ -277,17 +371,33 @@ def app(model_type: str, model_name_or_path: str, dataset_name: str, config_name
|
|
277 |
|
278 |
# return fig, text_output
|
279 |
|
280 |
-
report_card = generate_report_card(results, label_map)
|
281 |
-
visualization = generate_visualization(visualization_type, results, label_map)
|
282 |
|
283 |
per_class_metrics_str = "\n".join([f"{label}: Acc {acc:.2f}, F1 {f1:.2f}" for label, acc, f1 in zip(
|
284 |
label_map.values(), report_card['per_class_accuracy'], report_card['per_class_f1'])])
|
285 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
|
287 |
# return report_card["fig"], f"Accuracy: {report_card['accuracy']}, Fairness Score: {report_card['fairness_score'][1]:.2f}"
|
288 |
# return f"Accuracy: {report_card['accuracy']}, Fairness Score: {report_card['fairness_score'][1]:.2f}", report_card["fig"]
|
289 |
-
return (f"
|
290 |
-
|
|
|
291 |
|
292 |
interface = gr.Interface(
|
293 |
fn=app,
|
@@ -304,8 +414,9 @@ interface = gr.Interface(
|
|
304 |
choices=["train", "validation", "test"], label="Dataset Split", default="validation"),
|
305 |
gr.inputs.Number(default=100, label="Number of Samples"),
|
306 |
gr.inputs.Dropdown(
|
307 |
-
choices=["confusion_matrix", "per_class_accuracy", "per_class_f1"], label="Visualization Type", default="
|
308 |
),
|
|
|
309 |
],
|
310 |
# outputs=gr.Plot(),
|
311 |
# outputs=gr.outputs.HTML(),
|
|
|
1 |
import gradio as gr
|
2 |
import requests
|
3 |
import json
|
4 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelForQuestionAnswering
|
5 |
|
6 |
from datasets import load_dataset
|
7 |
import datasets
|
|
|
70 |
label_map = {i: label for i, label in enumerate(set(dataset["label"]))}
|
71 |
return label_map
|
72 |
|
73 |
+
# Explain fairness score: https://arxiv.org/pdf/1908.09635.pdf
|
74 |
def calculate_fairness_score(results, label_map):
|
75 |
true_labels = [r[1] for r in results]
|
76 |
pred_labels = [r[2] for r in results]
|
|
|
89 |
cm = confusion_matrix(true_group_labels, pred_group_labels, labels=list(group_names))
|
90 |
group_cms[group] = cm
|
91 |
|
92 |
+
# Calculate fairness score which means the average difference between confusion matrices
|
93 |
score = 0
|
94 |
for i, group1 in enumerate(group_names):
|
95 |
for j, group2 in enumerate(group_names):
|
|
|
101 |
|
102 |
return accuracy, score
|
103 |
|
104 |
+
# Per-class metrics means the metrics for each class, and the class is defined by the label_map
|
105 |
def calculate_per_class_metrics(true_labels, pred_labels, label_map, metric='accuracy'):
|
106 |
unique_labels = sorted(label_map.values())
|
107 |
metrics = []
|
|
|
121 |
|
122 |
return metrics
|
123 |
|
124 |
+
def generate_fairness_statement(accuracy, fairness_score):
|
125 |
+
accuracy_level = "high" if accuracy >= 0.85 else "moderate" if accuracy >= 0.7 else "low"
|
126 |
+
fairness_level = "low" if fairness_score <= 0.15 else "moderate" if fairness_score <= 0.3 else "high"
|
127 |
+
|
128 |
+
# statement = f"The model has a {accuracy_level} overall accuracy of {accuracy * 100:.2f}% and a {fairness_level} fairness score of {fairness_score:.2f}. "
|
129 |
+
statement = f"Assessment: "
|
130 |
+
|
131 |
+
if fairness_level == "low":
|
132 |
+
statement += f"The low fairness score ({fairness_score:.2f}) and accuracy ({accuracy * 100:.2f}%) indicate that the model is relatively fair and does not exhibit significant bias across different groups."
|
133 |
+
elif fairness_level == "moderate":
|
134 |
+
statement += f"The moderate fairness score ({fairness_score:.2f}) and accuracy ({accuracy * 100:.2f}%) suggest that the model may have some bias across different groups, and further investigation is needed to ensure it does not disproportionately affect certain groups."
|
135 |
+
else:
|
136 |
+
statement += f"The high fairness score ({fairness_score:.2f}) and accuracy ({accuracy * 100:.2f}%) indicate that the model exhibits significant bias across different groups, and it's recommended to address this issue to ensure fair predictions for all groups."
|
137 |
+
|
138 |
+
return statement
|
139 |
+
|
140 |
+
def generate_visualization(visualization_type, results, label_map, chart_mode):
|
141 |
true_labels = [r[1] for r in results]
|
142 |
pred_labels = [r[2] for r in results]
|
143 |
+
|
144 |
+
background_color = "white" if chart_mode == "Light" else "black"
|
145 |
+
text_color = "black" if chart_mode == "Light" else "white"
|
146 |
|
147 |
if visualization_type == "confusion_matrix":
|
148 |
+
return generate_report_card(results, label_map, chart_mode)["fig"]
|
149 |
elif visualization_type == "per_class_accuracy":
|
150 |
per_class_accuracy = calculate_per_class_metrics(
|
151 |
true_labels, pred_labels, label_map, metric='accuracy')
|
|
|
160 |
marker_color=colors[i % len(colors)]
|
161 |
))
|
162 |
|
163 |
+
fig.update_xaxes(showgrid=True, gridwidth=1,
|
164 |
+
gridcolor='LightGray', linecolor='black', linewidth=1)
|
165 |
+
fig.update_yaxes(showgrid=True, gridwidth=1,
|
166 |
+
gridcolor='LightGray', linecolor='black', linewidth=1)
|
167 |
+
fig.update_layout(plot_bgcolor=background_color,
|
168 |
+
paper_bgcolor=background_color,
|
169 |
+
font=dict(color=text_color),
|
170 |
+
title='Per-Class Accuracy',
|
171 |
+
xaxis_title='Class', yaxis_title='Accuracy'
|
172 |
+
|
173 |
+
)
|
174 |
return fig
|
175 |
elif visualization_type == "per_class_f1":
|
176 |
per_class_f1 = calculate_per_class_metrics(
|
|
|
186 |
marker_color=colors[i % len(colors)]
|
187 |
))
|
188 |
|
189 |
+
fig.update_xaxes(showgrid=True, gridwidth=1,
|
190 |
+
gridcolor='LightGray', linecolor='black', linewidth=1)
|
191 |
+
fig.update_yaxes(showgrid=True, gridwidth=1,
|
192 |
+
gridcolor='LightGray', linecolor='black', linewidth=1)
|
193 |
+
fig.update_layout(plot_bgcolor=background_color,
|
194 |
+
paper_bgcolor=background_color,
|
195 |
+
font=dict(color=text_color),
|
196 |
+
title='Per-Class F1-Score',
|
197 |
+
xaxis_title='Class', yaxis_title='F1-Score'
|
198 |
+
)
|
199 |
return fig
|
200 |
+
elif visualization_type == "interactive_dashboard":
|
201 |
+
return generate_interactive_dashboard(results, label_map, chart_mode)
|
202 |
else:
|
203 |
raise ValueError(f"Invalid visualization type: {visualization_type}")
|
204 |
|
205 |
+
def generate_interactive_dashboard(results, label_map, chart_mode):
|
206 |
+
true_labels = [r[1] for r in results]
|
207 |
+
pred_labels = [r[2] for r in results]
|
208 |
+
|
209 |
+
colors = ['#EF553B', '#00CC96', '#636EFA', '#AB63FA', '#FFA15A',
|
210 |
+
'#19D3F3', '#FF6692', '#B6E880', '#FF97FF', '#FECB52']
|
211 |
+
|
212 |
+
background_color = "white" if chart_mode == "Light" else "black"
|
213 |
+
text_color = "black" if chart_mode == "Light" else "white"
|
214 |
+
|
215 |
+
# Create confusion matrix
|
216 |
+
cm_fig = generate_report_card(results, label_map, chart_mode)["fig"]
|
217 |
+
|
218 |
+
# Create per-class accuracy bar chart
|
219 |
+
pca_data = calculate_per_class_metrics(true_labels, pred_labels, label_map, metric='accuracy')
|
220 |
+
pca_fig = go.Bar(x=list(label_map.values()), y=pca_data, marker=dict(color=colors))
|
221 |
+
|
222 |
+
# Create per-class F1-score bar chart
|
223 |
+
pcf_data = calculate_per_class_metrics(true_labels, pred_labels, label_map, metric='f1')
|
224 |
+
pcf_fig = go.Bar(x=list(label_map.values()), y=pcf_data, marker=dict(color=colors))
|
225 |
+
|
226 |
+
# Combine all charts into a mixed subplot
|
227 |
+
fig = make_subplots(rows=2, cols=2, shared_xaxes=True, specs=[[{"colspan": 2}, None],
|
228 |
+
[{}, {}]],
|
229 |
+
print_grid=True,subplot_titles=(
|
230 |
+
"Confusion Matrix", "Per-Class Accuracy", "Per-Class F1-Score"))
|
231 |
+
fig.add_trace(cm_fig['data'][0], row=1, col=1)
|
232 |
+
fig.add_trace(pca_fig, row=2, col=1)
|
233 |
+
fig.add_trace(pcf_fig, row=2, col=2)
|
234 |
+
|
235 |
+
fig.update_xaxes(showgrid=True, gridwidth=1,
|
236 |
+
gridcolor='LightGray', linecolor='black', linewidth=1)
|
237 |
+
fig.update_yaxes(showgrid=True, gridwidth=1,
|
238 |
+
gridcolor='LightGray', linecolor='black', linewidth=1)
|
239 |
+
# Update layout
|
240 |
+
fig.update_layout(height=700, width=650,
|
241 |
+
plot_bgcolor=background_color,
|
242 |
+
paper_bgcolor=background_color,
|
243 |
+
font=dict(color=text_color),
|
244 |
+
title="Fairness Report", showlegend=False
|
245 |
+
)
|
246 |
+
|
247 |
+
return fig
|
248 |
+
|
249 |
+
def generate_report_card(results, label_map, chart_mode):
|
250 |
true_labels = [r[1] for r in results]
|
251 |
pred_labels = [r[2] for r in results]
|
252 |
+
|
253 |
+
background_color = "white" if chart_mode == "Light" else "black"
|
254 |
+
text_color = "black" if chart_mode == "Light" else "white"
|
255 |
+
|
256 |
+
cm = confusion_matrix(true_labels, pred_labels)
|
257 |
+
|
258 |
+
# Normalize the confusion matrix
|
259 |
+
cm_normalized = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
|
260 |
+
|
261 |
+
# Create a custom color scale
|
262 |
+
custom_color_scale = np.zeros(cm_normalized.shape, dtype='str')
|
263 |
+
for i in range(cm_normalized.shape[0]):
|
264 |
+
for j in range(cm_normalized.shape[1]):
|
265 |
+
custom_color_scale[i, j] = '#EF553B' if i == j else '#00CC96'
|
266 |
+
|
267 |
+
fig = go.Figure(go.Heatmap(z=cm_normalized,
|
268 |
+
x=list(label_map.values()),
|
269 |
+
y=list(label_map.values()),
|
270 |
+
text=cm,
|
271 |
+
hovertemplate='%{text}',
|
272 |
+
colorscale=[[0, '#EF553B'], [
|
273 |
+
1, '#00CC96']],
|
274 |
+
showscale=False,
|
275 |
+
zmin=0, zmax=1,
|
276 |
+
customdata=custom_color_scale))
|
277 |
+
|
278 |
+
fig.update_xaxes(showgrid=True, gridwidth=1,
|
279 |
+
gridcolor='LightGray', linecolor='black', linewidth=1)
|
280 |
+
fig.update_yaxes(showgrid=True, gridwidth=1,
|
281 |
+
gridcolor='LightGray', linecolor='black', linewidth=1)
|
282 |
fig.update_layout(
|
283 |
+
plot_bgcolor=background_color,
|
284 |
+
paper_bgcolor=background_color,
|
285 |
+
font=dict(color=text_color),
|
286 |
height=500, width=600,
|
287 |
title='Confusion Matrix',
|
288 |
xaxis=dict(title='Predicted Labels'),
|
289 |
+
yaxis=dict(title='True Labels')
|
290 |
)
|
291 |
|
292 |
# Create the text output
|
|
|
299 |
per_class_f1 = calculate_per_class_metrics(
|
300 |
true_labels, pred_labels, label_map, metric='f1')
|
301 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
report_card = {
|
303 |
"fig": fig,
|
304 |
"accuracy": accuracy,
|
|
|
309 |
return report_card
|
310 |
|
311 |
# return fig, text_output
|
312 |
+
|
313 |
+
|
314 |
+
def generate_insights(custom_text, model_name, dataset_name, accuracy, fairness_score, report_card, generator):
|
315 |
+
per_class_metrics = {
|
316 |
+
'accuracy': report_card.get('per_class_accuracy', []),
|
317 |
+
'f1': report_card.get('per_class_f1', [])
|
318 |
+
}
|
319 |
+
|
320 |
+
if not per_class_metrics['accuracy'] or not per_class_metrics['f1']:
|
321 |
+
input_text = f"{custom_text} The model {model_name} has been evaluated on the {dataset_name} dataset. It has an overall accuracy of {accuracy * 100:.2f}%. The fairness score is {fairness_score:.2f}. Per-class metrics could not be calculated. Please provide some interesting insights about the fairness and bias of the model."
|
322 |
+
else:
|
323 |
+
input_text = f"{custom_text} The model {model_name} has been evaluated on the {dataset_name} dataset. It has an overall accuracy of {accuracy * 100:.2f}%. The fairness score is {fairness_score:.2f}. The per-class metrics are: {per_class_metrics}. Please provide some interesting insights about the fairness, bias, and per-class performance."
|
324 |
|
325 |
|
326 |
+
insights = generator(input_text, max_length=600,
|
327 |
+
do_sample=True, temperature=0.7)
|
328 |
+
return insights[0]['generated_text']
|
329 |
+
|
330 |
+
|
331 |
+
def app(model_type: str, model_name_or_path: str, dataset_name: str, config_name: str, dataset_split: str, num_samples: int, visualization_type: str, chart_mode: str):
|
332 |
tokenizer, model = load_model(
|
333 |
model_type, model_name_or_path, dataset_name, config_name)
|
334 |
|
|
|
371 |
|
372 |
# return fig, text_output
|
373 |
|
374 |
+
report_card = generate_report_card(results, label_map, chart_mode)
|
375 |
+
visualization = generate_visualization(visualization_type, results, label_map, chart_mode)
|
376 |
|
377 |
per_class_metrics_str = "\n".join([f"{label}: Acc {acc:.2f}, F1 {f1:.2f}" for label, acc, f1 in zip(
|
378 |
label_map.values(), report_card['per_class_accuracy'], report_card['per_class_f1'])])
|
379 |
+
|
380 |
+
accuracy, fairness_score = calculate_fairness_score(results, label_map)
|
381 |
+
fairness_statement = generate_fairness_statement(accuracy, fairness_score)
|
382 |
+
|
383 |
+
# Use a GPU if available, otherwise use -1 for CPU.
|
384 |
+
generator = pipeline(
|
385 |
+
'text-generation', model='gpt2', device=-1) # Use EleutherAI/gpt-neo-1.3B or EleutherAI/GPT-J-6B for GPT3 for distilgpt2 for GPT2
|
386 |
+
per_class_metrics = {
|
387 |
+
'accuracy': report_card['per_class_accuracy'],
|
388 |
+
'f1': report_card['per_class_f1']
|
389 |
+
}
|
390 |
+
|
391 |
+
custom_text = fairness_statement
|
392 |
+
|
393 |
+
insights = generate_insights(custom_text, model_name_or_path,
|
394 |
+
dataset_name, accuracy, fairness_score, report_card, generator)
|
395 |
|
396 |
# return report_card["fig"], f"Accuracy: {report_card['accuracy']}, Fairness Score: {report_card['fairness_score'][1]:.2f}"
|
397 |
# return f"Accuracy: {report_card['accuracy']}, Fairness Score: {report_card['fairness_score'][1]:.2f}", report_card["fig"]
|
398 |
+
return (f"{insights}\n\n"
|
399 |
+
f"Accuracy: {report_card['accuracy']}, Fairness Score: {report_card['fairness_score'][1]: .2f}\n\n"
|
400 |
+
f"Per-Class Metrics:\n{per_class_metrics_str}"), visualization
|
401 |
|
402 |
interface = gr.Interface(
|
403 |
fn=app,
|
|
|
414 |
choices=["train", "validation", "test"], label="Dataset Split", default="validation"),
|
415 |
gr.inputs.Number(default=100, label="Number of Samples"),
|
416 |
gr.inputs.Dropdown(
|
417 |
+
choices=["interactive_dashboard", "confusion_matrix", "per_class_accuracy", "per_class_f1"], label="Visualization Type", default="interactive_dashboard"
|
418 |
),
|
419 |
+
gr.inputs.Radio(["Light", "Dark"], label="Chart Mode", default="Light"),
|
420 |
],
|
421 |
# outputs=gr.Plot(),
|
422 |
# outputs=gr.outputs.HTML(),
|