Spaces:
Restarting
Restarting
File size: 7,075 Bytes
8e67ebe 4ade002 8e67ebe a67391c 8e67ebe 6863798 8e67ebe d6ca95d 8e67ebe 6863798 34ecb22 d6ca95d 4ade002 8e67ebe d0e8be9 8e67ebe d0e8be9 8e67ebe d6ca95d d0e8be9 8e67ebe d6ca95d 8e67ebe ce477d4 d6ca95d 6863798 ce477d4 d0e8be9 ce477d4 d0e8be9 ce477d4 d0e8be9 ce477d4 8e67ebe ce477d4 d0e8be9 6863798 d0e8be9 6863798 ce477d4 d0e8be9 49498de d0e8be9 d6ca95d d0e8be9 d6ca95d d0e8be9 d6ca95d d0e8be9 49498de d0e8be9 d6ca95d d0e8be9 ce477d4 d0e8be9 8e67ebe d0e8be9 8e67ebe 40646ba d0e8be9 8e67ebe d0e8be9 d6ca95d 137d615 d6ca95d 4ade002 d6ca95d 2274e1b 4ade002 d6ca95d 34ecb22 b19c539 34ecb22 e348563 8e67ebe d0e8be9 8e67ebe d6ca95d 8e67ebe d0e8be9 ce477d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import logging
import os
os.makedirs("tmp", exist_ok=True)
os.environ['TMP_DIR'] = "tmp"
import subprocess
import shutil
import gradio as gr
from apscheduler.schedulers.background import BackgroundScheduler
from gradio_leaderboard import Leaderboard, SelectColumns
from gradio_space_ci import enable_space_ci
import json
from io import BytesIO
from src.display.about import (
INTRODUCTION_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
AutoEvalColumn,
fields,
)
from src.envs import API, H4_TOKEN, HF_HOME, REPO_ID, RESET_JUDGEMENT_ENV
from src.leaderboard.build_leaderboard import build_leadearboard_df, download_openbench, download_dataset
import huggingface_hub
# huggingface_hub.login(token=H4_TOKEN)
os.environ["GRADIO_ANALYTICS_ENABLED"] = "false"
# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
# Start ephemeral Spaces on PRs (see config in README.md)
enable_space_ci()
download_openbench()
def restart_space():
API.restart_space(repo_id=REPO_ID)
download_openbench()
def build_demo():
demo = gr.Blocks(title="Small Shlepa", css=custom_css)
leaderboard_df = build_leadearboard_df()
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons"):
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
Leaderboard(
value=leaderboard_df,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.dummy],
label="Select Columns to Display:",
),
search_columns=[
AutoEvalColumn.model.name,
# AutoEvalColumn.fullname.name,
# AutoEvalColumn.license.name
],
)
# with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=1):
# gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
# with gr.TabItem("❗FAQ", elem_id="llm-benchmark-tab-table", id=2):
# gr.Markdown(FAQ_TEXT, elem_classes="markdown-text")
with gr.TabItem("🚀 Submit ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Row():
gr.Markdown("# ✨ Submit your model here!", elem_classes="markdown-text")
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
submitter_username = gr.Textbox(label="Username")
def upload_file(file,su,mn):
file_path = file.name.split("/")[-1] if "/" in file.name else file.name
logging.info("New submition: file saved to %s", file_path)
with open(file.name, "r") as f:
v=json.load(f)
new_file = v['results']
new_file['model'] = mn+"/"+su
new_file['moviesmc']=new_file['moviemc']["acc,none"]
new_file['musicmc']=new_file['musicmc']["acc,none"]
new_file['booksmc']=new_file['bookmc']["acc,none"]
new_file['lawmc']=new_file['lawmc']["acc,none"]
# name = v['config']["model_args"].split('=')[1].split(',')[0]
new_file['model_dtype'] = v['config']["model_dtype"]
new_file['ppl'] = 0
new_file.pop('moviemc')
new_file.pop('bookmc')
buf = BytesIO()
buf.write(json.dumps(new_file).encode('utf-8'))
API.upload_file(
path_or_fileobj=buf,
path_in_repo="model_data/external/" + su+mn + ".json",
repo_id="Vikhrmodels/s-openbench-eval",
repo_type="dataset",
)
os.environ[RESET_JUDGEMENT_ENV] = "1"
return file.name
if model_name_textbox and submitter_username:
file_output = gr.File()
upload_button = gr.UploadButton(
"Click to Upload & Submit Answers", file_types=["*"], file_count="single"
)
upload_button.upload(upload_file, [upload_button,model_name_textbox,submitter_username], file_output)
return demo
# print(os.system('cd src/gen && ../../.venv/bin/python gen_judgment.py'))
# print(os.system('cd src/gen/ && python show_result.py --output'))
def update_board():
need_reset = os.environ.get(RESET_JUDGEMENT_ENV)
logging.info("Updating the judgement: %s", need_reset)
if need_reset != "1":
return
os.environ[RESET_JUDGEMENT_ENV] = "0"
import shutil
# `shutil.rmtree("./m_data")` is a Python command that removes a directory and all its contents
# recursively. In this specific context, it is used to delete the directory named "m_data" along
# with all its files and subdirectories. This command helps in cleaning up the existing data in
# the "m_data" directory before downloading new dataset files into it.
# shutil.rmtree("./m_data")
# shutil.rmtree("./data")
download_dataset("Vikhrmodels/s-openbench-eval", "m_data")
import glob
data_list = [{"musicmc": 0.3021276595744681, "lawmc": 0.2800829875518672, "model": "apsys/saiga_3_8b", "moviesmc": 0.3472222222222222, "booksmc": 0.2800829875518672, "model_dtype": "torch.float16", "ppl": 0}]
for file in glob.glob("./m_data/model_data/external/*.json"):
with open(file) as f:
try:
data = json.load(f)
data_list.append(data)
except:
continue
if len(data_list) >1:
data_list.pop(0)
with open("genned.json", "w") as f:
json.dump(data_list, f)
API.upload_file(
path_or_fileobj="genned.json",
path_in_repo="leaderboard.json",
repo_id="Vikhrmodels/s-shlepa-metainfo",
repo_type="dataset",
)
restart_space()
# gen_judgement_file = os.path.join(HF_HOME, "src/gen/gen_judgement.py")
# subprocess.run(["python3", gen_judgement_file], check=True)
if __name__ == "__main__":
os.environ[RESET_JUDGEMENT_ENV] = "1"
scheduler = BackgroundScheduler()
scheduler.add_job(update_board, "interval", minutes=1)
scheduler.start()
demo_app = build_demo()
demo_app.launch(debug=True)
|