Spaces:
Running
Running
File size: 10,112 Bytes
8e67ebe 80fb33a 8e67ebe 80fb33a 8e67ebe 80fb33a 8e67ebe 80fb33a 8e67ebe d0e8be9 8e67ebe d0e8be9 8e67ebe d0e8be9 8e67ebe d0e8be9 8e67ebe d0e8be9 8e67ebe d0e8be9 8e67ebe d0e8be9 8e67ebe d0e8be9 8e67ebe d0e8be9 8e67ebe d0e8be9 8e67ebe d0e8be9 8e67ebe d0e8be9 8e67ebe d0e8be9 8e67ebe d0e8be9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import argparse
import datetime
import math
import os
from collections import defaultdict
from glob import glob
import numpy as np
import pandas as pd
import plotly.express as px
from sklearn.linear_model import LogisticRegression
from tqdm import tqdm
from utils import load_model_answers
def compute_mle_elo(df, SCALE=400, BASE=10, INIT_RATING=1000):
models = pd.concat([df["model_a"], df["model_b"]]).unique()
models = pd.Series(np.arange(len(models)), index=models)
# duplicate battles
df = pd.concat([df, df], ignore_index=True)
p = len(models.index)
n = df.shape[0]
X = np.zeros([n, p])
X[np.arange(n), models[df["model_a"]]] = +math.log(BASE)
X[np.arange(n), models[df["model_b"]]] = -math.log(BASE)
# one A win => two A win
Y = np.zeros(n)
Y[df["winner"] == "model_a"] = 1.0
# one tie => one A win + one B win
# find tie + tie (both bad) index
tie_idx = (df["winner"] == "tie") | (df["winner"] == "tie (bothbad)")
tie_idx[len(tie_idx) // 2 :] = False
Y[tie_idx] = 1.0
lr = LogisticRegression(fit_intercept=False, penalty=None, tol=1e-8)
lr.fit(X, Y)
elo_scores = SCALE * lr.coef_[0] + INIT_RATING
# set anchor as gpt-3.5-turbo-0125 = 1000
if "gpt-3.5-turbo-0125" in models.index:
elo_scores += 1000 - elo_scores[models["gpt-3.5-turbo-0125"]]
return pd.Series(elo_scores, index=models.index).sort_values(ascending=False)
def get_bootstrap_result(battles, func_compute_elo, num_round):
rows = []
for i in tqdm(range(num_round), desc="bootstrap"):
rows.append(func_compute_elo(battles.sample(frac=1.0, replace=True)))
df = pd.DataFrame(rows)
return df[df.median().sort_values(ascending=False).index]
def preety_print_two_ratings(ratings_1, ratings_2, column_names):
df = (
pd.DataFrame(
[[n, ratings_1[n], ratings_2[n]] for n in ratings_1.keys()],
columns=["Model", column_names[0], column_names[1]],
)
.sort_values(column_names[0], ascending=False)
.reset_index(drop=True)
)
df[column_names[0]] = (df[column_names[0]] + 0.5).astype(int)
df[column_names[1]] = (df[column_names[1]] + 0.5).astype(int)
df.index = df.index + 1
return df
def visualize_bootstrap_scores(df, title):
bars = (
pd.DataFrame(dict(lower=df.quantile(0.025), rating=df.quantile(0.5), upper=df.quantile(0.975)))
.reset_index(names="model")
.sort_values("rating", ascending=False)
)
bars["error_y"] = bars["upper"] - bars["rating"]
bars["error_y_minus"] = bars["rating"] - bars["lower"]
bars["rating_rounded"] = np.round(bars["rating"], 2)
fig = px.scatter(
bars,
x="model",
y="rating",
error_y="error_y",
error_y_minus="error_y_minus",
text="rating_rounded",
title=title,
)
fig.update_layout(xaxis_title="Model", yaxis_title="Rating", height=600)
return fig
def predict_win_rate(elo_ratings, SCALE=400, BASE=10, INIT_RATING=1000):
names = sorted(list(elo_ratings.keys()))
wins = defaultdict(lambda: defaultdict(lambda: 0))
for a in names:
for b in names:
ea = 1 / (1 + BASE ** ((elo_ratings[b] - elo_ratings[a]) / SCALE))
wins[a][b] = ea
wins[b][a] = 1 - ea
data = {a: [wins[a][b] if a != b else np.NAN for b in names] for a in names}
df = pd.DataFrame(data, index=names)
df.index.name = "model_a"
df.columns.name = "model_b"
return df.T
def get_win_rate_column(df, column, baseline="gpt-3.5-turbo-0125"):
to_dict = df[["model", column]].set_index("model").to_dict()[column]
win_rate_table = predict_win_rate(to_dict)
return win_rate_table[baseline].fillna(0.5).apply(lambda x: round(x * 100, 2))
def get_battles_from_judgment(judge_name, first_game_only=False, WEIGHT=3):
arena_hard_battles = pd.DataFrame()
print("Turning judgment results into battles...")
directory = f"data/arena-hard-v0.1/model_judgement/{judge_name}"
assert os.path.exists(directory)
for file in tqdm(glob(f"{directory}/*jsonl")):
df = pd.read_json(file, lines=True)
for _, row in df.iterrows():
# game 1
output = {"question_id": row["question_id"], "model_a": "gpt-3.5-turbo-0125", "model_b": row["model"]}
game = row["games"][0]
weight = 1
if game["score"] == "A=B":
output["winner"] = "tie"
elif game["score"] == "A>B":
output["winner"] = "model_a"
elif game["score"] == "A>>B":
output["winner"] = "model_a"
weight = WEIGHT
elif game["score"] == "B>A":
output["winner"] = "model_b"
elif game["score"] == "B>>A":
output["winner"] = "model_b"
weight = WEIGHT
else:
weight = 0
if weight:
arena_hard_battles = pd.concat([arena_hard_battles, pd.DataFrame([output] * weight)])
if not first_game_only:
# game 2
output = {"question_id": row["question_id"], "model_a": "gpt-3.5-turbo-0125", "model_b": row["model"]}
game = row["games"][1]
weight = 1
if game["score"] == "A=B":
output["winner"] = "tie"
elif game["score"] == "A>B":
output["winner"] = "model_b"
elif game["score"] == "A>>B":
output["winner"] = "model_b"
weight = WEIGHT
elif game["score"] == "B>A":
output["winner"] = "model_a"
elif game["score"] == "B>>A":
output["winner"] = "model_a"
weight = WEIGHT
else:
weight = 0
if weight:
arena_hard_battles = pd.concat([arena_hard_battles, pd.DataFrame([output] * weight)])
arena_hard_battles.to_json("data/arena_hard_battles.jsonl", lines=True, orient="records")
return arena_hard_battles
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--bench-name", type=str, default="arena-hard-v0.1")
parser.add_argument("--judge-name", type=str, default="gpt-4-1106-preview")
parser.add_argument("--baseline", type=str, default="gpt-3.5-turbo-0125")
parser.add_argument("--load-battles", action="store_true")
parser.add_argument("--load-bootstrap", action="store_true")
parser.add_argument("--show-elo", action="store_true")
parser.add_argument("--weight", type=int, default=3)
parser.add_argument("--num-rounds", type=int, default=100)
parser.add_argument("--output", action="store_true")
parser.add_argument("--first-game-only", action="store_true")
args = parser.parse_args()
print(args)
assert not args.load_bootstrap or (
args.load_battles and args.load_bootstrap
), "If loading prexisting bootstrapping data, you must also load preexisting battles."
answer_dir = os.path.join("data", args.bench_name, "model_answer/external")
model_answers = load_model_answers(answer_dir)
if args.load_battles:
assert os.path.exists("data/arena_hard_battles.jsonl")
battles = pd.read_json("data/arena_hard_battles.jsonl", lines=True)
else:
battles = get_battles_from_judgment(args.judge_name, args.first_game_only, args.weight)
bootstrap_online_elo = compute_mle_elo(battles)
if args.load_bootstrap:
bootstrap_elo_lu = pd.read_json("data/bootstrapping_results.jsonl", lines=True)
else:
np.random.seed(42)
bootstrap_elo_lu = get_bootstrap_result(battles, compute_mle_elo, args.num_rounds)
bootstrap_elo_lu.to_json("data/bootstrapping_results.jsonl", lines=True, orient="records")
stats = pd.DataFrame()
stats["results"] = None
stats["results"] = stats["results"].astype("object")
for i, model in enumerate(bootstrap_online_elo.index):
assert model in bootstrap_elo_lu.columns
stats.at[i, "model"] = model
stats.at[i, "score"] = bootstrap_online_elo[model]
stats.at[i, "lower"] = np.percentile(bootstrap_elo_lu[model], 2.5)
stats.at[i, "upper"] = np.percentile(bootstrap_elo_lu[model], 97.5)
length = 0
if model in model_answers:
for _, row in model_answers[model].items():
turn = row["choices"][0]["turns"][0]
length += turn["token_len"]
length /= len(model_answers[model])
stats.at[i, "avg_tokens"] = int(length)
stats.at[i, "results"] = bootstrap_elo_lu[model].tolist()
if not args.show_elo:
stats.sort_values(by="model", inplace=True)
stats["score"] = get_win_rate_column(stats, "score", args.baseline).tolist()
stats["lower"] = get_win_rate_column(stats, "lower", args.baseline).tolist()
stats["upper"] = get_win_rate_column(stats, "upper", args.baseline).tolist()
decimal = 1
else:
decimal = 0
stats = stats.astype({"score": int, "lower": int, "upper": int})
stats.sort_values(by="score", ascending=False, inplace=True)
for _, row in stats.iterrows():
interval = str((round(row["lower"] - row["score"], decimal), round(row["upper"] - row["score"], decimal)))
print(
f"{row['model'] : <30} | score: {round(row['score'], decimal) : ^5} | 95% CI: {interval : ^12} | average #tokens: {int(row['avg_tokens'])}"
)
if args.output:
cur_date = datetime.datetime.now()
date_str = cur_date.strftime("%Y%m%d")
stats.to_json(f"arena_hard_leaderboard_{date_str}.json", orient="records", indent=4)
import huggingface_hub
huggingface_hub.HfApi().upload_file(
path_or_fileobj=f"arena_hard_leaderboard_{date_str}.json",
path_in_repo="evals/upd.json",
repo_id="Vikhrmodels/openbench-eval",
repo_type="dataset",
)
|