File size: 6,988 Bytes
8e67ebe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9358ac6
 
8e67ebe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9358ac6
8e67ebe
 
 
 
 
 
 
 
 
9358ac6
8e67ebe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9358ac6
8e67ebe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9358ac6
8e67ebe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9358ac6
8e67ebe
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import json
import logging
import os
import subprocess
import time

import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from gradio_space_ci import enable_space_ci
from huggingface_hub import snapshot_download

from src.display.about import (
    FAQ_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.envs import (
    API,
    EVAL_RESULTS_PATH,
    H4_TOKEN,
    REPO_ID,
    RESET_JUDGEMENT_ENV,
)

os.environ['GRADIO_ANALYTICS_ENABLED']='false'

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# Start ephemeral Spaces on PRs (see config in README.md)
enable_space_ci()

def restart_space():
    API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)


def time_diff_wrapper(func):
    def wrapper(*args, **kwargs):
        start_time = time.time()
        result = func(*args, **kwargs)
        end_time = time.time()
        diff = end_time - start_time
        logging.info(f"Time taken for {func.__name__}: {diff} seconds")
        return result
    return wrapper


@time_diff_wrapper
def download_dataset(repo_id, local_dir, repo_type="dataset", max_attempts=3, backoff_factor=1.5):
    """Download dataset with exponential backoff retries."""
    attempt = 0
    while attempt < max_attempts:
        try:
            logging.info(f"Downloading {repo_id} to {local_dir}")
            snapshot_download(
                repo_id=repo_id,
                local_dir=local_dir,
                repo_type=repo_type,
                tqdm_class=None,
                etag_timeout=30,
                max_workers=8,
            )
            logging.info("Download successful")
            return
        except Exception as e:
            wait_time = backoff_factor ** attempt
            logging.error(f"Error downloading {repo_id}: {e}, retrying in {wait_time}s")
            time.sleep(wait_time)
            attempt += 1
    raise Exception(f"Failed to download {repo_id} after {max_attempts} attempts")

def init_space(full_init: bool = True):
    """Initializes the application space, loading only necessary data."""
    if full_init:
        # These downloads only occur on full initialization
        # try:
            # download_dataset(QUEUE_REPO, EVAL_REQUESTS_PATH)
            # download_dataset(DYNAMIC_INFO_REPO, DYNAMIC_INFO_PATH)
            download_dataset("Vikhrmodels/openbench-eval", EVAL_RESULTS_PATH)
            # print(subprocess.Popen('ls src'))
            subprocess.run(['rsync', '-avzP', '--ignore-existing', f'{EVAL_RESULTS_PATH[2:]}/external/*', 'src/gen/data/arena-hard-v0.1/model_answer/'], check=False)
            subprocess.run(['rsync', '-avzP', '--ignore-existing', f'{EVAL_RESULTS_PATH[2:]}/model_judgment/*', 'src/gen/data/arena-hard-v0.1/model_judgement/'], check=False)
        # except Exception:
        #     restart_space()

    # Always retrieve the leaderboard DataFrame
    original_df = pd.DataFrame.from_records(json.load(open('eval-results/evals/upd.json','r')))


    leaderboard_df = original_df.copy()

    return leaderboard_df

# Convert the environment variable "LEADERBOARD_FULL_INIT" to a boolean value, defaulting to True if the variable is not set.
# This controls whether a full initialization should be performed.
do_full_init = os.getenv("LEADERBOARD_FULL_INIT", "True") == "True"

# Calls the init_space function with the `full_init` parameter determined by the `do_full_init` variable.
# This initializes various DataFrames used throughout the application, with the level of initialization detail controlled by the `do_full_init` flag.
# leaderboard_df = init_space(full_init=do_full_init)

demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
            pass
            """
            leaderboard = Leaderboard(
                value=leaderboard_df,
                datatype=[c.type for c in fields(AutoEvalColumn)],
                select_columns=SelectColumns(
                    default_selection=[
                        c.name
                        for c in fields(AutoEvalColumn)
                        if c.displayed_by_default
                    ],
                    cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.dummy],
                    label="Select Columns to Display:",
                ),
                search_columns=[
                    AutoEvalColumn.model.name,
                    # AutoEvalColumn.fullname.name,
                    # AutoEvalColumn.license.name
                ],
            )
            """


        with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=3):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        with gr.TabItem("❗FAQ", elem_id="llm-benchmark-tab-table", id=4):
            gr.Markdown(FAQ_TEXT, elem_classes="markdown-text")

        with gr.TabItem("🚀 Submit ", elem_id="llm-benchmark-tab-table", id=5):

            with gr.Row():
                gr.Markdown("# ✨ Submit your model here!", elem_classes="markdown-text")

            with gr.Column():
                    model_name_textbox = gr.Textbox(label="Model name")
                    def upload_file(file):
                        file_path = file.name.split('/')[-1] if '/' in file.name else file.name
                        logging.info("New submition: file saved to %s", file_path)
                        API.upload_file(path_or_fileobj=file.name,path_in_repo='./external/'+file_path,repo_id='Vikhrmodels/openbench-eval',repo_type='dataset')
                        os.environ[RESET_JUDGEMENT_ENV] = '1'

                        return file.name
                    if model_name_textbox:
                        file_output = gr.File()
                        upload_button = gr.UploadButton("Click to Upload & Submit Answers", file_types=['*'], file_count="single")
                        upload_button.upload(upload_file, upload_button, file_output)
             
# print(os.system('cd src/gen && ../../.venv/bin/python gen_judgment.py'))
# print(os.system('cd src/gen/ && python show_result.py --output'))
           
def update_board():
    need_reset = os.environ.get(RESET_JUDGEMENT_ENV)
    if need_reset != '1':
        return
    
    os.environ[RESET_JUDGEMENT_ENV] = '0'
    
    subprocess.run(['python','../gen/gen_judgement.py'], check = False)

    subprocess.Popen('python3 ../gen/show_result.py --output')


if __name__ == "__main__":
    os.environ[RESET_JUDGEMENT_ENV] = '1'
    
    scheduler = BackgroundScheduler()
    scheduler.add_job(update_board, "interval", minutes=10) 
    scheduler.start()

    demo.queue(default_concurrency_limit=40).launch(debug=True)