File size: 11,591 Bytes
8e67ebe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import json
from pathlib import Path
from json import JSONDecodeError
import logging
import math

from dataclasses import dataclass, field
from typing import Optional, Dict, List

from tqdm import tqdm
from tqdm.contrib.logging import logging_redirect_tqdm

import numpy as np

from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Precision, Tasks, WeightType, parse_datetime

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

@dataclass
class EvalResult:
    # Also see src.display.utils.AutoEvalColumn for what will be displayed.
    eval_name: str # org_model_precision (uid)
    full_model: str # org/model (path on hub)
    org: Optional[str]
    model: str
    revision: str # commit hash, "" if main
    results: Dict[str, float]
    precision: Precision = Precision.Unknown
    model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
    weight_type: WeightType = WeightType.Original
    architecture: str = "Unknown" # From config file
    license: str = "?"
    likes: int = 0
    num_params: int = 0
    date: str = "" # submission date of request file
    still_on_hub: bool = True
    is_merge: bool = False
    not_flagged: bool = False
    status: str = "FINISHED"
    # List of tags, initialized to a new empty list for each instance to avoid the pitfalls of mutable default arguments.
    tags: List[str] = field(default_factory=list)
 
    
    @classmethod
    def init_from_json_file(cls, json_filepath: str) -> 'EvalResult':
        with open(json_filepath, 'r') as fp:
            data = json.load(fp)

        config = data.get("config_general", {})
        precision = Precision.from_str(config.get("model_dtype", "unknown"))
        org_and_model = config.get("model_name", "").split("/", 1)
        org = org_and_model[0] if len(org_and_model) > 1 else None
        model = org_and_model[-1]
        if len(org_and_model) == 1:
            org = None
            model = org_and_model[0]
            result_key = f"{model}_{precision.value.name}"
        else:
            org = org_and_model[0]
            model = org_and_model[1]
            result_key = f"{org}_{model}_{precision.value.name}"
        full_model = "/".join(org_and_model)

        results = cls.extract_results(data)  # Properly call the method to extract results

        return cls(
            eval_name=result_key,
            full_model=full_model,
            org=org,
            model=model,
            results=results,
            precision=precision,
            revision=config.get("model_sha", "")
        )

    @staticmethod
    def extract_results(data: Dict) -> Dict[str, float]:
        """
        Extract and process benchmark results from a given dict.

        Parameters:
        - data (Dict): A dictionary containing benchmark data. This dictionary must
        include 'versions' and 'results' keys with respective sub-data.

        Returns:
        - Dict[str, float]: A dictionary where keys are benchmark names and values
        are the processed average scores as percentages.

        Notes:
        - The method specifically checks for certain benchmark names to skip outdated entries.
        - Handles NaN values by setting the corresponding benchmark result to 0.0.
        - Averages scores across metrics for benchmarks found in the data, in a percentage format.
        """
        results = {}
        for task in Tasks:
            task = task.value
            # We skip old mmlu entries
            if task.benchmark == "hendrycksTest":
                for mmlu_k in ["harness|hendrycksTest-abstract_algebra|5", "hendrycksTest-abstract_algebra"]:
                    if mmlu_k in data["versions"] and data["versions"][mmlu_k] == 0:
                        continue

            # Some benchamrk values are NaNs, mostly truthfulQA
            # Would be more optimal (without the whole dict itertion) if benchmark name was same as key in results
            # e.g. not harness|truthfulqa:mc|0 but truthfulqa:mc
            for k, v in data["results"].items():
                if task.benchmark in k:
                    if math.isnan(float(v[task.metric])):
                        results[task.benchmark] = 0.0
                        continue

            # We average all scores of a given metric (mostly for mmlu)
            accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark in k])
            if accs.size == 0 or any([acc is None for acc in accs]):
                continue

            mean_acc = np.mean(accs) * 100.0
            results[task.benchmark] = mean_acc
        
        return results


    def update_with_request_file(self, requests_path):
        """Finds the relevant request file for the current model and updates info with it."""
        try:
            request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
            if request_file is None:
                logging.warning(f"No request file for {self.org}/{self.model}")
                self.status = "FAILED"
                return
            
            with open(request_file, "r") as f:
                request = json.load(f)
            
            self.model_type = ModelType.from_str(request.get("model_type", "Unknown"))
            self.weight_type = WeightType[request.get("weight_type", "Original")]
            self.num_params = int(request.get("params", 0))  # Ensuring type safety
            self.date = request.get("submitted_time", "")
            self.architecture = request.get("architectures", "Unknown")
            self.status = request.get("status", "FAILED")
            
        except FileNotFoundError:
            self.status = "FAILED"
            logging.error(f"Request file: {request_file} not found for {self.org}/{self.model}")
        except JSONDecodeError:
            self.status = "FAILED"
            logging.error(f"Error decoding JSON from the request file for {self.org}/{self.model}")
        except KeyError as e:
            self.status = "FAILED"
            logging.error(f"Key error {e} in processing request file for {self.org}/{self.model}")
        except Exception as e:  # Catch-all for any other unexpected exceptions
            self.status = "FAILED"
            logging.error(f"Unexpected error {e} for {self.org}/{self.model}")


    def update_with_dynamic_file_dict(self, file_dict):
        """Update object attributes based on the provided dictionary, with error handling for missing keys and type validation."""
        # Default values set for optional or potentially missing keys.
        self.license = file_dict.get("license", "?")
        self.likes = int(file_dict.get("likes", 0))  # Ensure likes is treated as an integer
        self.still_on_hub = file_dict.get("still_on_hub", False)  # Default to False if key is missing
        self.tags = file_dict.get("tags", [])
        
        # Calculate `flagged` only if 'tags' is not empty and avoid calculating each time
        self.not_flagged = not (any("flagged" in tag for tag in self.tags))


    def to_dict(self):
        """Converts the Eval Result to a dict compatible with our dataframe display"""
        average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
        data_dict = {
            "eval_name": self.eval_name,  # not a column, just a save name,
            AutoEvalColumn.precision.name: self.precision.value.name,
            AutoEvalColumn.model_type.name: self.model_type.value.name,
            AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
            AutoEvalColumn.weight_type.name: self.weight_type.value.name,
            AutoEvalColumn.architecture.name: self.architecture,
            AutoEvalColumn.model.name: make_clickable_model(self.full_model),
            AutoEvalColumn.fullname.name: self.full_model,
            AutoEvalColumn.revision.name: self.revision,
            AutoEvalColumn.average.name: average,
            AutoEvalColumn.license.name: self.license,
            AutoEvalColumn.likes.name: self.likes,
            AutoEvalColumn.params.name: self.num_params,
            AutoEvalColumn.still_on_hub.name: self.still_on_hub,
            AutoEvalColumn.merged.name: not( "merge" in self.tags if self.tags else False),
            AutoEvalColumn.moe.name: not ( ("moe" in self.tags if self.tags else False) or "moe" in self.full_model.lower()) ,
            AutoEvalColumn.not_flagged.name: self.not_flagged,
        }

        for task in Tasks:
            data_dict[task.value.col_name] = self.results[task.value.benchmark]

        return data_dict
    

def get_request_file_for_model(requests_path, model_name, precision):
    """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
    requests_path = Path(requests_path)
    pattern = f"{model_name}_eval_request_*.json"
    
    # Using pathlib to find files matching the pattern
    request_files = list(requests_path.glob(pattern))
    
    # Sort the files by name in descending order to mimic 'reverse=True'
    request_files.sort(reverse=True)

    # Select the correct request file based on 'status' and 'precision'
    request_file = None
    for request_file in request_files:
        with request_file.open("r") as f:
            req_content = json.load(f)
            if req_content["status"] == "FINISHED" and req_content["precision"] == precision.split(".")[-1]:
                request_file = str(request_file)
    
    # Return empty string if no file found that matches criteria
    return request_file


def get_raw_eval_results(results_path: str, requests_path: str, dynamic_path: str) -> list[EvalResult]:
    """From the path of the results folder root, extract all needed info for results"""
    with open(dynamic_path) as f:
        dynamic_data = json.load(f)
    
    results_path = Path(results_path)
    model_files = list(results_path.rglob('results_*.json'))
    model_files.sort(key=lambda file: parse_datetime(file.stem.removeprefix("results_")))

    eval_results = {}
    # Wrap model_files iteration with tqdm for progress display
    for model_result_filepath in tqdm(model_files, desc="Processing model files"):
        # Creation of result
        eval_result = EvalResult.init_from_json_file(model_result_filepath)
        with logging_redirect_tqdm():
            eval_result.update_with_request_file(requests_path)

        if eval_result.full_model in dynamic_data:
            eval_result.update_with_dynamic_file_dict(dynamic_data[eval_result.full_model])
            # Hardcoding because of gating problem
            if any([org in eval_result.full_model for org in ["meta-llama/", "google/", "tiiuae/"]]):
                eval_result.still_on_hub = True

        # Store results of same eval together
        eval_name = eval_result.eval_name
        if eval_name in eval_results.keys():
            eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
        else:
            eval_results[eval_name] = eval_result

    results = []
    for k, v in eval_results.items():
        try:
            if v.status == "FINISHED":
                v.to_dict()  # we test if the dict version is complete
                results.append(v)
        except KeyError as e:
            logging.error(f"Error while checking model {k} {v.date} json, no key: {e}")  # not all eval values present
            continue

    return results