Spaces:
Running
Running
File size: 9,066 Bytes
8e67ebe d0e8be9 8e67ebe d0e8be9 8e67ebe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
from dataclasses import dataclass, make_dataclass
from enum import Enum
import json
import logging
from datetime import datetime
import pandas as pd
# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
def parse_datetime(datetime_str):
formats = [
"%Y-%m-%dT%H-%M-%S.%f", # Format with dashes
"%Y-%m-%dT%H:%M:%S.%f", # Standard format with colons
"%Y-%m-%dT%H %M %S.%f", # Spaces as separator
]
for fmt in formats:
try:
return datetime.strptime(datetime_str, fmt)
except ValueError:
continue
# in rare cases set unix start time for files with incorrect time (legacy files)
logging.error(f"No valid date format found for: {datetime_str}")
return datetime(1970, 1, 1)
def load_json_data(file_path):
"""Safely load JSON data from a file."""
try:
with open(file_path, "r") as file:
return json.load(file)
except json.JSONDecodeError:
print(f"Error reading JSON from {file_path}")
return None # Or raise an exception
def fields(raw_class):
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
@dataclass
class Task:
benchmark: str
metric: str
col_name: str
class Tasks(Enum):
arc = Task("arc:challenge", "acc_norm", "ARC")
hellaswag = Task("hellaswag", "acc_norm", "HellaSwag")
mmlu = Task("hendrycksTest", "acc", "MMLU")
truthfulqa = Task("truthfulqa:mc", "mc2", "TruthfulQA")
winogrande = Task("winogrande", "acc", "Winogrande")
gsm8k = Task("gsm8k", "acc", "GSM8K")
# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass(frozen=True)
class ColumnContent:
name: str
type: str
displayed_by_default: bool
hidden: bool = False
never_hidden: bool = False
dummy: bool = False
auto_eval_column_dict = []
# Init
# auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("model", "markdown", True, never_hidden=True)])
# # Scores
auto_eval_column_dict.append(["score", ColumnContent, ColumnContent("score", "number", True)])
# for task in Tasks:
# auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
# # Model information
# auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
# auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
# auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
# auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
# auto_eval_column_dict.append(["merged", ColumnContent, ColumnContent("Merged", "bool", False)])
# auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
# auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
# auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
# auto_eval_column_dict.append(
# ["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, hidden=True)]
# )
# auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
# auto_eval_column_dict.append(["not_flagged", ColumnContent, ColumnContent("Flagged", "bool", False, hidden=True)])
# auto_eval_column_dict.append(["moe", ColumnContent, ColumnContent("MoE", "bool", False, hidden=True)])
# Dummy column for the search bar (hidden by the custom CSS)
# auto_eval_column_dict.append(["tokens", ColumnContent, ColumnContent("avg_tokens", "str", False, dummy=True)])
# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
@dataclass(frozen=True)
class EvalQueueColumn: # Queue column
model = ColumnContent("model", "markdown", True)
# revision = ColumnContent("revision", "str", True)
# private = ColumnContent("private", "bool", True)
# precision = ColumnContent("precision", "str", True)
# weight_type = ColumnContent("weight_type", "str", "Original")
# status = ColumnContent("status", "str", True)
baseline_row = {
AutoEvalColumn.model.name: "<p>Baseline</p>",
# AutoEvalColumn.revision.name: "N/A",
# AutoEvalColumn.precision.name: None,
# AutoEvalColumn.merged.name: False,
# AutoEvalColumn.average.name: 31.0,
# AutoEvalColumn.arc.name: 25.0,
# AutoEvalColumn.hellaswag.name: 25.0,
# AutoEvalColumn.mmlu.name: 25.0,
# AutoEvalColumn.truthfulqa.name: 25.0,
# AutoEvalColumn.winogrande.name: 50.0,
# AutoEvalColumn.gsm8k.name: 0.21,
# AutoEvalColumn.fullname.name: "baseline",
# AutoEvalColumn.model_type.name: "",
# AutoEvalColumn.not_flagged.name: False,
}
# Average ⬆️ human baseline is 0.897 (source: averaging human baselines below)
# ARC human baseline is 0.80 (source: https://lab42.global/arc/)
# HellaSwag human baseline is 0.95 (source: https://deepgram.com/learn/hellaswag-llm-benchmark-guide)
# MMLU human baseline is 0.898 (source: https://openreview.net/forum?id=d7KBjmI3GmQ)
# TruthfulQA human baseline is 0.94(source: https://arxiv.org/pdf/2109.07958.pdf)
# Winogrande: https://leaderboard.allenai.org/winogrande/submissions/public
# GSM8K: paper
# Define the human baselines
human_baseline_row = {
AutoEvalColumn.model.name: "<p>Human performance</p>",
# AutoEvalColumn.revision.name: "N/A",
# AutoEvalColumn.precision.name: None,
# AutoEvalColumn.average.name: 92.75,
# AutoEvalColumn.merged.name: False,
# AutoEvalColumn.arc.name: 80.0,
# AutoEvalColumn.hellaswag.name: 95.0,
# AutoEvalColumn.mmlu.name: 89.8,
# AutoEvalColumn.truthfulqa.name: 94.0,
# AutoEvalColumn.winogrande.name: 94.0,
# AutoEvalColumn.gsm8k.name: 100,
# AutoEvalColumn.fullname.name: "human_baseline",
# AutoEvalColumn.model_type.name: "",
# AutoEvalColumn.not_flagged.name: False,
}
@dataclass
class ModelDetails:
name: str
symbol: str = "" # emoji, only for the model type
class ModelType(Enum):
PT = ModelDetails(name="pretrained", symbol="🟢")
CPT = ModelDetails(name="continuously pretrained", symbol="🟩")
FT = ModelDetails(name="fine-tuned on domain-specific datasets", symbol="🔶")
chat = ModelDetails(name="chat models (RLHF, DPO, IFT, ...)", symbol="💬")
merges = ModelDetails(name="base merges and moerges", symbol="🤝")
Unknown = ModelDetails(name="", symbol="?")
def to_str(self, separator=" "):
return f"{self.value.symbol}{separator}{self.value.name}"
@staticmethod
def from_str(type):
if "fine-tuned" in type or "🔶" in type:
return ModelType.FT
if "continously pretrained" in type or "🟩" in type:
return ModelType.CPT
if "pretrained" in type or "🟢" in type:
return ModelType.PT
if any([k in type for k in ["instruction-tuned", "RL-tuned", "chat", "🟦", "⭕", "💬"]]):
return ModelType.chat
if "merge" in type or "🤝" in type:
return ModelType.merges
return ModelType.Unknown
class WeightType(Enum):
Adapter = ModelDetails("Adapter")
Original = ModelDetails("Original")
Delta = ModelDetails("Delta")
class Precision(Enum):
float16 = ModelDetails("float16")
bfloat16 = ModelDetails("bfloat16")
qt_8bit = ModelDetails("8bit")
qt_4bit = ModelDetails("4bit")
qt_GPTQ = ModelDetails("GPTQ")
Unknown = ModelDetails("?")
def from_str(precision):
if precision in ["torch.float16", "float16"]:
return Precision.float16
if precision in ["torch.bfloat16", "bfloat16"]:
return Precision.bfloat16
if precision in ["8bit"]:
return Precision.qt_8bit
if precision in ["4bit"]:
return Precision.qt_4bit
if precision in ["GPTQ", "None"]:
return Precision.qt_GPTQ
return Precision.Unknown
# Column selection
COLS = [c.name for c in fields(AutoEvalColumn)]
TYPES = [c.type for c in fields(AutoEvalColumn)]
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
# BENCHMARK_COLS = [t.value.col_name for t in Tasks]
NUMERIC_INTERVALS = {
"?": pd.Interval(-1, 0, closed="right"),
"~1.5": pd.Interval(0, 2, closed="right"),
"~3": pd.Interval(2, 4, closed="right"),
"~7": pd.Interval(4, 9, closed="right"),
"~13": pd.Interval(9, 20, closed="right"),
"~35": pd.Interval(20, 45, closed="right"),
"~60": pd.Interval(45, 70, closed="right"),
"70+": pd.Interval(70, 10000, closed="right"),
}
|