Spaces:
Running
Running
File size: 7,442 Bytes
8e67ebe d0e8be9 8e67ebe d0e8be9 8e67ebe d0e8be9 8e67ebe d0e8be9 8e67ebe d0e8be9 8e67ebe d0e8be9 8e67ebe d0e8be9 8e67ebe d0e8be9 8e67ebe d0e8be9 8e67ebe d0e8be9 8e67ebe d0e8be9 8e67ebe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
"""Generate answers using api endpoints.
Usage:
python gen_api_answer --parallel 32
"""
import argparse
import json
import os
import time
import concurrent.futures
import tiktoken
import shortuuid
import tqdm
from utils import (
load_questions,
load_model_answers,
make_config,
get_endpoint,
chat_completion_openai,
chat_completion_yandex,
chat_completion_gigachat,
chat_completion_anthropic,
chat_completion_openai_azure,
chat_completion_mistral,
chat_completion_gemini,
chat_completion_cohere,
reorg_answer_file,
OPENAI_MODEL_LIST,
temperature_config,
)
def get_answer(
question: dict,
model: str,
endpoint_info: dict,
num_choices: int,
max_tokens: int,
temperature: float,
answer_file: str,
api_dict: dict,
):
if question["category"] in temperature_config:
temperature = temperature_config[question["category"]]
api_type = endpoint_info["api_type"]
conv = []
if "system_prompt" in endpoint_info.keys():
conv.append({"role": "system", "content": endpoint_info["system_prompt"]})
elif model in OPENAI_MODEL_LIST:
conv.append({"role": "system", "content": "You are a helpful assistant."})
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
choices = []
for i in range(num_choices):
turns = []
for j in range(len(question["turns"])):
conv.append({"role": "user", "content": question["turns"][j]["content"]})
if api_type == "anthropic":
output = chat_completion_anthropic(
model=endpoint_info["model_name"], messages=conv, temperature=temperature, max_tokens=max_tokens
)
elif api_type == "mistral":
output = chat_completion_mistral(
model=endpoint_info["model_name"], messages=conv, temperature=temperature, max_tokens=max_tokens
)
elif api_type == "yandex":
output = chat_completion_yandex(
model=endpoint_info["model_name"],
messages=conv,
temperature=temperature,
max_tokens=max_tokens,
api_dict=api_dict,
)
elif api_type == "gigachat":
output = chat_completion_gigachat(
model=endpoint_info["model_name"],
messages=conv,
temperature=temperature,
max_tokens=max_tokens,
api_dict=api_dict,
)
elif api_type == "gemini":
output = chat_completion_gemini(
model=endpoint_info["model_name"],
messages=question["turns"][j]["content"],
temperature=temperature,
max_tokens=max_tokens,
)
elif api_type == "azure":
output = chat_completion_openai_azure(
model=endpoint_info["model_name"],
messages=conv,
temperature=temperature,
max_tokens=max_tokens,
api_dict=api_dict,
)
elif api_type == "cohere":
output = chat_completion_cohere(
model=endpoint_info["model_name"], messages=conv, temperature=temperature, max_tokens=max_tokens
)
else:
output = chat_completion_openai(
model=endpoint_info["model_name"],
messages=conv,
temperature=temperature,
max_tokens=max_tokens,
api_dict=api_dict,
)
conv.append({"role": "assistant", "content": output})
turns.append({"content": output, "token_len": len(encoding.encode(output))})
choices.append({"index": i, "turns": turns})
# Dump answers
ans = {
"question_id": question["question_id"],
"answer_id": shortuuid.uuid(),
"model_id": model,
"choices": choices,
"tstamp": time.time(),
}
os.makedirs(os.path.dirname(answer_file), exist_ok=True)
with open(answer_file, "a") as fout:
fout.write(json.dumps(ans) + "\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--setting-file", type=str, default="config/gen_answer_config.yaml")
parser.add_argument("--endpoint-file", type=str, default="config/api_config.yaml")
args = parser.parse_args()
settings = make_config(args.setting_file)
endpoint_list = make_config(args.endpoint_file)
existing_answer = load_model_answers(os.path.join("data", settings["bench_name"], "model_answer"))
print(settings)
for model in settings["model_list"]:
assert model in endpoint_list
endpoint_info = endpoint_list[model]
question_file = os.path.join("data", settings["bench_name"], "question.jsonl")
questions = load_questions(question_file)
answer_file = os.path.join("data", settings["bench_name"], "model_answer", f"{model}.jsonl")
print(f"Output to {answer_file}")
if "parallel" in endpoint_info:
parallel = endpoint_info["parallel"]
else:
parallel = 1
# We want to maximizes the number of tokens generate per answer: max_tokens = specified token # - input tokens #
if "tokenizer" in endpoint_info:
question_list = [question["turns"][0]["content"] for question in questions]
if model in OPENAI_MODEL_LIST:
tokenizer = tiktoken.encoding_for_model(endpoint_info["model_name"])
tokens = [tokenizer.encode(prompt) for prompt in question_list]
max_tokens = [(settings["max_tokens"] - len(token) - 100) for token in tokens]
else:
from transformers import AutoTokenizer
os.environ["TOKENIZERS_PARALLELISM"] = "false"
tokenizer = AutoTokenizer.from_pretrained(endpoint_info["tokenizer"])
tokens = tokenizer(question_list)
max_tokens = [(settings["max_tokens"] - len(prompt) - 300) for prompt in tokens["input_ids"]]
else:
max_tokens = [settings["max_tokens"]] * len(questions)
with concurrent.futures.ThreadPoolExecutor(max_workers=parallel) as executor:
futures = []
count = 0
for index, question in enumerate(questions):
if model in existing_answer and question["question_id"] in existing_answer[model]:
count += 1
continue
future = executor.submit(
get_answer,
question,
model,
endpoint_info,
settings["num_choices"],
max_tokens[index],
settings["temperature"],
answer_file,
get_endpoint(endpoint_info["endpoints"]),
)
futures.append(future)
if count > 0:
print(f"{count} number of existing answers")
for future in tqdm.tqdm(concurrent.futures.as_completed(futures), total=len(futures)):
future.result()
reorg_answer_file(answer_file)
|