hi-melnikov's picture
First setup of leaderboard
8e67ebe
raw
history blame
6.55 kB
import json
import os
from datetime import datetime, timezone
from huggingface_hub import snapshot_download
from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import (
API,
DYNAMIC_INFO_FILE_PATH,
DYNAMIC_INFO_PATH,
DYNAMIC_INFO_REPO,
EVAL_REQUESTS_PATH,
H4_TOKEN,
QUEUE_REPO,
RATE_LIMIT_PERIOD,
RATE_LIMIT_QUOTA,
)
# from src.leaderboard.filter_models import DO_NOT_SUBMIT_MODELS
# from src.submission.check_validity import (
# already_submitted_models,
# check_model_card,
# get_model_size,
# get_model_tags,
# is_model_on_hub,
# user_submission_permission,
# )
REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None
def add_new_eval(
model: str,
):
# global REQUESTED_MODELS
# global USERS_TO_SUBMISSION_DATES
# if not REQUESTED_MODELS:
# REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
# user_name = ""
# model_path = model
# if "/" in model:
# user_name = model.split("/")[0]
# model_path = model.split("/")[1]
# # precision = precision.split(" ")[0]
# current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
# if model_type is None or model_type == "":
# return styled_error("Please select a model type.")
# # Is the user rate limited?
# if user_name != "":
# user_can_submit, error_msg = user_submission_permission(
# user_name, USERS_TO_SUBMISSION_DATES, RATE_LIMIT_PERIOD, RATE_LIMIT_QUOTA
# )
# if not user_can_submit:
# return styled_error(error_msg)
# Did the model authors forbid its submission to the leaderboard?
# if model in DO_NOT_SUBMIT_MODELS or base_model in DO_NOT_SUBMIT_MODELS:
# return styled_warning("Model authors have requested that their model be not submitted on the leaderboard.")
# if model == "CohereForAI/c4ai-command-r-plus":
# return styled_warning(
# "This model cannot be submitted manually on the leaderboard before the transformers release."
# )
# # Does the model actually exist?
# if revision == "":
# revision = "main"
# # Is the model on the hub?
# if weight_type in ["Delta", "Adapter"]:
# base_model_on_hub, error, _ = is_model_on_hub(
# model_name=base_model, revision=revision, token=H4_TOKEN, test_tokenizer=True
# )
# if not base_model_on_hub:
# return styled_error(f'Base model "{base_model}" {error}')
# architecture = "?"
# downloads = 0
# created_at = ""
# if not weight_type == "Adapter":
# model_on_hub, error, model_config = is_model_on_hub(model_name=model, revision=revision, test_tokenizer=True)
# if not model_on_hub or model_config is None:
# return styled_error(f'Model "{model}" {error}')
# if model_config is not None:
# architectures = getattr(model_config, "architectures", None)
# if architectures:
# architecture = ";".join(architectures)
# downloads = getattr(model_config, "downloads", 0)
# created_at = getattr(model_config, "created_at", "")
# Is the model info correctly filled?
# try:
# model_info = API.model_info(repo_id=model, revision=revision)
# except Exception:
# return styled_error("Could not get your model information. Please fill it up properly.")
# model_size = get_model_size(model_info=model_info, precision=precision)
# Were the model card and license filled?
# try:
# license = model_info.cardData["license"]
# except Exception:
# return styled_error("Please select a license for your model")
# modelcard_OK, error_msg, model_card = check_model_card(model)
# if not modelcard_OK:
# return styled_error(error_msg)
# tags = get_model_tags(model_card, model)
# # Seems good, creating the eval
# print("Adding new eval")
# eval_entry = {
# "model": model,
# # "base_model": base_model,
# # "revision": model_info.sha, # force to use the exact model commit
# # "private": private,
# # "precision": precision,
# # "params": model_size,
# # "architectures": architecture,
# # "weight_type": weight_type,
# "status": "PENDING",
# # "submitted_time": current_time,
# # "model_type": model_type,
# "job_id": -1,
# "job_start_time": None,
# }
# supplementary_info = {
# "likes": model_info.likes,
# "license": license,
# "still_on_hub": True,
# "tags": tags,
# "downloads": downloads,
# "created_at": created_at,
# }
# # Check for duplicate submission
# if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
# return styled_warning("This model has been already submitted.")
# print("Creating eval file")
# OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
# os.makedirs(OUT_DIR, exist_ok=True)
# out_path = f"{OUT_DIR}/{model_path}_eval_request_{private}_{precision}_{weight_type}.json"
# with open(out_path, "w") as f:
# f.write(json.dumps(eval_entry))
# print("Uploading eval file")
# API.upload_file(
# path_or_fileobj=out_path,
# path_in_repo=out_path.split("eval-queue/")[1],
# repo_id=QUEUE_REPO,
# repo_type="dataset",
# commit_message=f"Add {model} to eval queue",
# )
# We want to grab the latest version of the submission file to not accidentally overwrite it
# snapshot_download(
# repo_id=DYNAMIC_INFO_REPO, local_dir=DYNAMIC_INFO_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
# )
# with open(DYNAMIC_INFO_FILE_PATH) as f:
# all_supplementary_info = json.load(f)
# # all_supplementary_info[model] = supplementary_info
# with open(DYNAMIC_INFO_FILE_PATH, "w") as f:
# json.dump(all_supplementary_info, f, indent=2)
# API.upload_file(
# path_or_fileobj=DYNAMIC_INFO_FILE_PATH,
# path_in_repo=DYNAMIC_INFO_FILE_PATH.split("/")[-1],
# repo_id=DYNAMIC_INFO_REPO,
# repo_type="dataset",
# commit_message=f"Add {model} to dynamic info queue",
# )
# # Remove the local file
# os.remove(out_path)
return styled_message(
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour."
)