kaz-llm-lb / src /leaderboard /build_leaderboard.py
apsys's picture
types fix + mmluproru
c30b150
raw
history blame
2.89 kB
import json
import logging
import os
import time
import pandas as pd
from huggingface_hub import snapshot_download
from src.envs import DATA_PATH, HF_TOKEN_PRIVATE
# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
def time_diff_wrapper(func):
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
diff = end_time - start_time
logging.info("Time taken for %s: %s seconds", func.__name__, diff)
return result
return wrapper
@time_diff_wrapper
def download_dataset(repo_id, local_dir, repo_type="dataset", max_attempts=3, backoff_factor=1.5):
"""Download dataset with exponential backoff retries."""
os.makedirs(local_dir, exist_ok=True)
attempt = 0
while attempt < max_attempts:
try:
logging.info("Downloading %s to %s", repo_id, local_dir)
snapshot_download(
repo_id=repo_id,
local_dir=local_dir,
cache_dir='./tmp',
repo_type=repo_type,
tqdm_class=None,
token=HF_TOKEN_PRIVATE,
etag_timeout=30,
max_workers=8,
local_dir_use_symlinks=False
)
logging.info("Download successful")
return
except Exception as e:
wait_time = backoff_factor**attempt
logging.error("Error downloading %s: %s, retrying in %ss", repo_id, e, wait_time)
time.sleep(wait_time)
attempt += 1
logging.error("Failed to download %s after %s attempts", repo_id, max_attempts)
def download_openbench():
# download prev autogenerated leaderboard files
download_dataset("Vikhrmodels/s-shlepa-metainfo", DATA_PATH)
# download answers of different models that we trust
download_dataset("Vikhrmodels/s-openbench-eval", "m_data")
def build_leadearboard_df():
# Retrieve the leaderboard DataFrame
with open(f"{os.path.abspath(DATA_PATH)}/leaderboard.json", "r", encoding="utf-8") as eval_file:
f=json.load(eval_file)
print(f)
df = pd.DataFrame.from_records(f)
if 'mmluproru' in list(df.columns):
df['mmluproru'] = df['mmluproru'].fillna(0)
else:
df['mmluproru'] = 0
leaderboard_df = df[['model','mmluproru','moviesmc','musicmc','lawmc','booksmc','model_dtype','ppl']]
leaderboard_df['avg ⬆️'] = leaderboard_df[['moviesmc','musicmc','lawmc','booksmc','mmluproru']].mean(axis=1)
leaderboard_df.sort_values(by='avg ⬆️',ascending=False,inplace=True)
numeric_cols = leaderboard_df.select_dtypes(include=['number']).columns
leaderboard_df[numeric_cols] = leaderboard_df[numeric_cols].round(3)
return leaderboard_df.copy()