import logging import os os.makedirs("tmp", exist_ok=True) os.environ['TMP_DIR'] = "tmp" import subprocess import gradio as gr from apscheduler.schedulers.background import BackgroundScheduler from gradio_leaderboard import Leaderboard, SelectColumns from gradio_space_ci import enable_space_ci import json from io import BytesIO from src.display.about import ( INTRODUCTION_TEXT, TITLE, ) from src.display.css_html_js import custom_css from src.display.utils import ( AutoEvalColumn, fields, ) from src.envs import API, H4_TOKEN, HF_HOME, REPO_ID, RESET_JUDGEMENT_ENV from src.leaderboard.build_leaderboard import build_leadearboard_df, download_openbench, download_dataset import huggingface_hub # huggingface_hub.login(token=H4_TOKEN) os.environ["GRADIO_ANALYTICS_ENABLED"] = "false" # Configure logging logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") # Start ephemeral Spaces on PRs (see config in README.md) enable_space_ci() download_openbench() def restart_space(): API.restart_space(repo_id=REPO_ID) download_openbench() def build_demo(): demo = gr.Blocks(title="Small Shlepa", css=custom_css) leaderboard_df = build_leadearboard_df() with demo: gr.HTML(TITLE) gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") with gr.Tabs(elem_classes="tab-buttons"): with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0): Leaderboard( value=leaderboard_df, datatype=[c.type for c in fields(AutoEvalColumn)], select_columns=SelectColumns( default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default], cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.dummy], label="Select Columns to Display:", ), search_columns=[ AutoEvalColumn.model.name, # AutoEvalColumn.fullname.name, # AutoEvalColumn.license.name ], ) # with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=1): # gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") # with gr.TabItem("❗FAQ", elem_id="llm-benchmark-tab-table", id=2): # gr.Markdown(FAQ_TEXT, elem_classes="markdown-text") with gr.TabItem("🚀 Submit ", elem_id="llm-benchmark-tab-table", id=3): with gr.Row(): gr.Markdown("# ✨ Submit your model here!", elem_classes="markdown-text") with gr.Column(): model_name_textbox = gr.Textbox(label="Model name") submitter_username = gr.Textbox(label="Username") def upload_file(file,su,mn): file_path = file.name.split("/")[-1] if "/" in file.name else file.name logging.info("New submition: file saved to %s", file_path) with open(file.name, "r") as f: v=json.load(f) new_file = v['results'] new_file['model'] = mn+"/"+su new_file['moviesmc']=new_file['moviemc']["acc,none"] new_file['musicmc']=new_file['musicmc']["acc,none"] new_file['booksmc']=new_file['bookmc']["acc,none"] new_file['lawmc']=new_file['lawmc']["acc,none"] # name = v['config']["model_args"].split('=')[1].split(',')[0] new_file['model_dtype'] = v['config']["model_dtype"] new_file['ppl'] = 0 new_file.pop('moviemc') new_file.pop('bookmc') buf = BytesIO() buf.write(json.dumps(new_file).encode('utf-8')) API.upload_file( path_or_fileobj=buf, path_in_repo="model_data/external/" + su+mn + ".json", repo_id="Vikhrmodels/s-openbench-eval", repo_type="dataset", ) os.environ[RESET_JUDGEMENT_ENV] = "1" return file.name if model_name_textbox and submitter_username: file_output = gr.File() upload_button = gr.UploadButton( "Click to Upload & Submit Answers", file_types=["*"], file_count="single" ) upload_button.upload(upload_file, [upload_button,model_name_textbox,submitter_username], file_output) return demo # print(os.system('cd src/gen && ../../.venv/bin/python gen_judgment.py')) # print(os.system('cd src/gen/ && python show_result.py --output')) def update_board(): need_reset = os.environ.get(RESET_JUDGEMENT_ENV) logging.info("Updating the judgement: %s", need_reset) if need_reset != "1": return os.environ[RESET_JUDGEMENT_ENV] = "0" import shutil shutil.rmtree("m_data") shutil.rmtree("data") download_dataset("Vikhrmodels/s-openbench-eval", "m_data") import glob data_list = [{"musicmc": 0.3021276595744681, "lawmc": 0.2800829875518672, "model": "apsys/saiga_3_8b", "moviesmc": 0.3472222222222222, "booksmc": 0.2800829875518672, "model_dtype": "torch.float16", "ppl": 0}] for file in glob.glob("./m_data/model_data/external/*.json"): with open(file) as f: try: data = json.load(f) data_list.append(data) except: continue if len(data_list) >=1: data_list.pop(0) with open("genned.json", "w") as f: json.dump(data_list, f) API.upload_file( path_or_fileobj="genned.json", path_in_repo="leaderboard.json", repo_id="Vikhrmodels/s-shlepa-metainfo", repo_type="dataset", ) restart_space() # gen_judgement_file = os.path.join(HF_HOME, "src/gen/gen_judgement.py") # subprocess.run(["python3", gen_judgement_file], check=True) if __name__ == "__main__": os.environ[RESET_JUDGEMENT_ENV] = "1" scheduler = BackgroundScheduler() scheduler.add_job(update_board, "interval", minutes=1) scheduler.start() demo_app = build_demo() demo_app.launch(debug=True)