from transformers import pipeline, set_seed from random import randint import gradio as gr generator = pipeline('text-generation', model='gpt2-large') set_seed(randint(randint(1000,10000),randint(50000,300000))) def gpt2(string, max_length): return generator(string, max_length=max_length, num_return_sequences=1)[0]['generated_text'] max_length_slider = gr.inputs.Slider(minimum=50, maximum=500, step=10, default=100, label="Maximum Length") iface = gr.Interface(fn=gpt2, inputs=["text", max_length_slider], outputs="text") iface.launch()