gabrielmotablima's picture
Update app.py
522a810 verified
import requests
from PIL import Image
from transformers import AutoTokenizer, AutoImageProcessor, VisionEncoderDecoderModel
import gradio as gr
import os
from concurrent.futures import ThreadPoolExecutor
# Load the model, tokenizer, and image processor with error handling
def load_model_and_components(model_name):
model = VisionEncoderDecoderModel.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
image_processor = AutoImageProcessor.from_pretrained(model_name)
return model, tokenizer, image_processor
# Preload both models in parallel
def preload_models():
models = {}
model_names = ["laicsiifes/swin-distilbertimbau", "laicsiifes/swin-gportuguese-2"]
with ThreadPoolExecutor() as executor:
results = executor.map(load_model_and_components, model_names)
for name, result in zip(model_names, results):
models[name] = result
return models
models = preload_models()
# Predefined images for selection
image_folder = "images"
predefined_images = [
Image.open(os.path.join(image_folder, fname)).convert("RGB")
for fname in os.listdir(image_folder) \
if fname.lower().endswith(('.png', '.jpg', '.jpeg', '.gif', '.bmp', '.ppm'))
]
# Function to preprocess the image to RGB format
def preprocess_image(image):
if image is None:
return None, None
pil_image = image.convert("RGB")
return pil_image, None
# Function to process the image and generate a caption
def generate_caption(image, selected_model):
if image is None:
return "Please upload an image to generate a caption."
model, tokenizer, image_processor = models[selected_model]
pixel_values = image_processor(image, return_tensors="pt").pixel_values
generated_ids = model.generate(pixel_values)
caption = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
return caption
# Define UI
with gr.Blocks(theme=gr.themes.Citrus(primary_hue="blue", secondary_hue="orange")) as interface:
gr.Markdown("""
# Welcome to the LAICSI-IFES space for Vision Encoder-Decoder (VED) demonstration
---
### Select an available model: Swin-DistilBERTimbau (168M) or Swin-GPorTuguese-2 (240M)
""")
with gr.Row(variant='panel'):
with gr.Column():
model_selector = gr.Dropdown(
choices=list(models.keys()),
value="laicsiifes/swin-distilbertimbau",
label="Select Model"
)
gr.Markdown("""
---
### Upload image or example images below, and click `Generate`
""")
with gr.Row(variant='panel'):
with gr.Column():
image_display = gr.Image(type="pil", label="Image Preview", image_mode="RGB", height=400)
with gr.Column():
output_text = gr.Textbox(label="Generated Caption")
generate_button = gr.Button("Generate")
gr.Markdown("""---""")
with gr.Row(variant='panel'):
examples = gr.Examples(
examples=predefined_images,
fn=preprocess_image,
inputs=[image_display],
outputs=[image_display, output_text],
label="Examples"
)
# Define actions
model_selector.change(fn=lambda: (None, None), outputs=[image_display, output_text])
image_display.upload(fn=preprocess_image, inputs=[image_display], outputs=[image_display, output_text])
image_display.clear(fn=lambda: None, outputs=[output_text])
generate_button.click(fn=generate_caption, inputs=[image_display, model_selector], outputs=output_text)
interface.launch(share=False)