import requests import praw import json import cv2 import numpy as np import textwrap from gtts import gTTS from pydub import AudioSegment import subprocess import re import os import random import time import sys import uuid from googleapiclient.discovery import build from googleapiclient.errors import HttpError from googleapiclient.http import MediaFileUpload from oauth2client.client import flow_from_clientsecrets from oauth2client.file import Storage from oauth2client.tools import run_flow from google.auth.transport.requests import Request import nltk nltk.download('punkt_tab') from tts import synthesiser, speaker_embedding import soundfile as sf import uuid from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import FileResponse, RedirectResponse from fastapi import FastAPI, Request, Response, HTTPException # from tortoise_tts import TextToSpeech # nltk.download('punkt') # Define the output folder path output_folder = 'output' audio_output_folder = 'audio' if not os.path.exists(audio_output_folder): os.makedirs(audio_output_folder) if not os.path.exists(output_folder): os.makedirs(output_folder) # Constants SCOPES = ["https://www.googleapis.com/auth/youtube.upload"] CLIENT_SECRETS_FILE = "client_secrets.json" # Update with your client_secrets.json file path YOUTUBE_UPLOAD_SCOPE = "https://www.googleapis.com/auth/youtube.upload" DRIVE_SCOPE = "https://www.googleapis.com/auth/drive" YOUTUBE_API_SERVICE_NAME = "youtube" YOUTUBE_API_VERSION = "v3" MAX_RETRIES = 10 RETRIABLE_STATUS_CODES = [500, 502, 503, 504] ELEVENLABS_KEY = "153f3875b30f603644cc66a78f1345ea" banned_words = ["fuck", "pussy", "ass", "porn", "gay", "dick", "cock", "kill", "fucking", "shit", "bitch", "bullshit", "asshole","douchebag", "bitch", "motherfucker", "nigga","cunt", "whore", "piss", "shoot", "bomb", "palestine", "israel" ] def contains_banned_word(text, banned_words): for word in banned_words: if word in text.lower(): return True return False def fetch_reddit_data(subreddit_name): # Reddit API Credentials client_id = 'TIacEazZS9FHWzDZ3T-3cA' client_secret = '6Urwdiqo_cC8Gt040K_rBhnR3r8CLg' user_agent = 'script by u/lakpriya1' # Initialize PRAW with your credentials reddit = praw.Reddit(client_id=client_id, client_secret=client_secret, user_agent=user_agent) subreddit = reddit.subreddit(subreddit_name) for _ in range(10): # Limit the number of attempts to 10 post = subreddit.random() # Check if the title contains a pattern resembling a URL if post and not re.search(r'\w+\.\w+', post.selftext) and not contains_banned_word(post.selftext, banned_words) and not len(post.selftext) < 50: post_data = {'title': post.title, 'selftext': post.selftext} with open('top_post.json', 'w') as outfile: json.dump(post_data, outfile, indent=4) print("Top post data saved to top_post.json") return # Exit after finding a suitable post print("No suitable post found without a URL-like string in the title.") def read_json(filename): print("Reading data from", filename) with open(filename, 'r') as file: data = json.load(file) return data def wrap_text(text, wrap_width): return textwrap.wrap(text, width=wrap_width) def resize_background_image(image_path, frame_width, frame_height): print("Resizing background image") image = cv2.imread(image_path) h, w = image.shape[:2] scale = max(frame_width / w, frame_height / h) new_w, new_h = int(w * scale), int(h * scale) resized_image = cv2.resize(image, (new_w, new_h)) # Cropping the resized image to fill the frame startx = new_w // 2 - (frame_width // 2) starty = new_h // 2 - (frame_height // 2) cropped_image = resized_image[starty:starty+frame_height, startx:startx+frame_width] return cropped_image def put_text_with_stroke(frame, texts, positions, font_scales, line_heights, wrap_widths, font_colors=(255, 255, 255), stroke_colors=(0, 0, 0), fonts=None): default_font = cv2.FONT_HERSHEY_COMPLEX if fonts is None: fonts = [default_font] * len(texts) # Use default font if not specified for text, position, font_scale, line_height, wrap_width, font_color, stroke_color, font in zip(texts, positions, font_scales, line_heights, wrap_widths, font_colors, stroke_colors, fonts): lines = wrap_text(text, wrap_width) # Calculate the total height of the text block total_text_height = line_height * len(lines) # Starting Y position to center text vertically if position[1] is None: start_y = (frame.shape[0] - total_text_height) // 2 + 100 else: start_y = position[1] for line in lines: text_size = cv2.getTextSize(line, font, font_scale, 1)[0] text_x = position[0] - text_size[0] // 2 text_y = start_y + line_height cv2.putText(frame, line, (text_x, text_y), font, font_scale, stroke_color, 8, cv2.LINE_AA) cv2.putText(frame, line, (text_x, text_y), font, font_scale, font_color, 2, cv2.LINE_AA) start_y += line_height # def create_video_from_title(title, background_image, output_filename, audio_duration): # print("Creating video from title") # # Video properties # fps = 24 # frame_width, frame_height = 720, 1280 # 9:16 aspect ratio # frame_count = audio_duration * fps # # Logo images # top_logo = load_logo('logo.png', frame_width, frame_height, 'top') # bottom_logo = load_logo('sub.png', frame_width, frame_height, 'bottom') # # OpenCV VideoWriter # fourcc = cv2.VideoWriter_fourcc(*'mp4v') # out = cv2.VideoWriter(output_filename, fourcc, fps, (frame_width, frame_height)) # # Resize the background image # background = resize_background_image(background_image, frame_width, frame_height) # for i in range(int(np.floor(frame_count))): # frame = background.copy() # Use the resized background image # # Overlay logos # frame = overlay_logo(frame, top_logo) # frame = overlay_logo(frame, bottom_logo) # # Add title to frame with text wrapping and highlight # put_text_with_stroke(frame, title, (50, 500), 1, 50, 25, font_color=(255, 255, 255), stroke_color=(0, 0, 0)) # Adjust wrap_width and line_height as needed # out.write(frame) # Write the frame to the video # out.release() def create_video_from_title(title, sentences, background_image, output_filename, audio_durations): print("Creating video from title") fps = 24 frame_width, frame_height = 720, 1280 # 9:16 aspect ratio # OpenCV VideoWriter fourcc = cv2.VideoWriter_fourcc(*'mp4v') out = cv2.VideoWriter(output_filename, fourcc, fps, (frame_width, frame_height)) # Logo images top_logo = load_logo('G.png', frame_width, frame_height, 'top') bottom_logo = load_logo('Follow.png', frame_width, frame_height, 'bottom') # Resize the background image background = resize_background_image(background_image, frame_width, frame_height) # Define font settings for title and sentence title_font = cv2.FONT_HERSHEY_TRIPLEX sentence_font = cv2.FONT_HERSHEY_TRIPLEX title_font_scale = 1.5 # Larger font for the title sentence_font_scale = 1.2 # Normal font for the sentence title_line_height = 50 sentence_line_height = 50 # Font color as white white_color = (255, 255, 255) # BGR color code for white stroke_color = (0, 0, 0) # BGR color code for black title = preprocess_text(title) current_frame = 0 for sentence, duration in zip(sentences, audio_durations): sentence_frames = int(duration * fps) for i in range(sentence_frames): frame = background.copy() # Overlay logos frame = overlay_logo(frame, top_logo) frame = overlay_logo(frame, bottom_logo) # Position for title and sentence title_position = (frame_width // 2, frame_height // 4) # Title at the top sentence_position = (frame_width // 2, None) # Sentence at the center sentence = preprocess_text(sentence) # Add title and sentence to frame with specific fonts, sizes, and colors put_text_with_stroke(frame, [title, sentence], [title_position, sentence_position], [title_font_scale, sentence_font_scale], [title_line_height, sentence_line_height], [25, 25], font_colors=[white_color, white_color], stroke_colors=[stroke_color, stroke_color], fonts=[title_font, sentence_font]) out.write(frame) current_frame += 1 out.release() def tts_per_sentence(sentences, output_folder, silence_duration=1000): audio_durations = [] audio_files = [] for index, sentence in enumerate(sentences): output_file = f'{output_folder}/voiceover_{index}.wav' text_to_speech_using_speecht5(sentence, output_file) audio = AudioSegment.from_wav(output_file) silence = AudioSegment.silent(duration=silence_duration) audio_with_silence = audio + silence audio_with_silence.export(output_file, format="wav") audio_duration = len(audio_with_silence) / 1000.0 audio_durations.append(audio_duration) audio_files.append(output_file) return audio_files, audio_durations # def eleven_labs_text_to_speech(text, output_file, voice_id): # url = f"https://api.elevenlabs.io/v1/text-to-speech/{voice_id}" # headers = { # "Accept": "audio/mpeg", # "Content-Type": "application/json", # "xi-api-key": ELEVENLABS_KEY # } # data = { # "text": text, # "model_id": "eleven_monolingual_v1", # "voice_settings": { # "stability": 0.5, # "similarity_boost": 0.5, # "speed": 0.3, # } # } # response = requests.post(url, json=data, headers=headers) # if response.status_code == 200: # with open(output_file, 'wb') as f: # for chunk in response.iter_content(chunk_size=1024): # f.write(chunk) # print(f"Audio content written to {output_file}") # else: # print(f"Failed to synthesize speech: {response.content}") def text_to_speech_using_speecht5(text, output_file): # Use the synthesiser from tts.py speech = synthesiser(text, forward_params={"speaker_embeddings": speaker_embedding}) sf.write(output_file, speech["audio"], samplerate=speech["sampling_rate"]) print(f"Audio content written to {output_file}") def fetch_random_nature_image(api_key): print("Fetching random nature image from Unsplash") url = f"https://api.unsplash.com/photos/random?query=horror&client_id={api_key}" response = requests.get(url) if response.status_code == 200: img_url = response.json()['urls']['regular'] img_data = requests.get(img_url).content with open('nature_background.jpg', 'wb') as handler: handler.write(img_data) return 'nature_background.jpg' else: print("Failed to fetch image from Unsplash") return None def preprocess_text(text): # Replace Unicode right single quotation mark with ASCII apostrophe text = text.replace('\u2019', "'") # If there are other specific characters causing issues, replace them similarly return text def text_to_speech(text, output_file): print("Converting text to speech") tts = gTTS(text=text, lang='en') tts.save(output_file) return output_file def get_audio_duration(audio_file): print("Getting audio duration") audio = AudioSegment.from_mp3(audio_file) return len(audio) / 1000.0 # Convert to seconds def combine_audio_video(video_file, audio_file, output_file, audio_delay_seconds=0.3): # Construct the full path for the output file output_file = os.path.join(output_folder, output_file) # Add a delay to the audio start cmd = f'ffmpeg -i "{video_file}" -itsoffset {audio_delay_seconds} -i "{audio_file}" -c:v copy -c:a aac -strict experimental -map 0:v:0 -map 1:a:0 "{output_file}"' subprocess.call(cmd, shell=True) print("Successfully made the video:", output_file) def load_logo(logo_path, frame_width, frame_height, position='top'): if not os.path.exists(logo_path): raise FileNotFoundError(f"Logo file not found: {logo_path}") logo = cv2.imread(logo_path, cv2.IMREAD_UNCHANGED) if logo is None: raise ValueError(f"Failed to load image at path: {logo_path}") logo_height, logo_width = logo.shape[:2] scale_factor = min(1, frame_width / 3 / logo_width, frame_height / 10 / logo_height) new_size = (int(logo_width * scale_factor * 1.3), int(logo_height * scale_factor * 1.3)) logo = cv2.resize(logo, new_size, interpolation=cv2.INTER_AREA) x_center = frame_width // 2 - logo.shape[1] // 2 y_pos = 100 if position == 'top' else frame_height - logo.shape[0] - 100 return logo, (x_center, y_pos) def overlay_logo(frame, logo_info): logo, (x, y) = logo_info y1, y2 = y, y + logo.shape[0] x1, x2 = x, x + logo.shape[1] if logo.shape[2] == 4: # If the logo has an alpha channel alpha_logo = logo[:, :, 3] / 255.0 alpha_frame = 1.0 - alpha_logo for c in range(0, 3): frame[y1:y2, x1:x2, c] = (alpha_logo * logo[:, :, c] + alpha_frame * frame[y1:y2, x1:x2, c]) else: # If the logo does not have an alpha channel frame[y1:y2, x1:x2] = logo return frame def get_authenticated_service(): flow = flow_from_clientsecrets(CLIENT_SECRETS_FILE, scope=YOUTUBE_UPLOAD_SCOPE) storage = Storage(f"{sys.argv[0]}-oauth2.json") credentials = storage.get() if credentials is None or credentials.invalid: credentials = run_flow(flow, storage) return build(YOUTUBE_API_SERVICE_NAME, YOUTUBE_API_VERSION, credentials=credentials) def upload_video_to_drive(video_file, folder_id=None): """Uploads a video to Google Drive.""" # Check if the credentials are stored storage = Storage(f"{sys.argv[0]}-oauth2.json") credentials = storage.get() # If credentials are not available or are invalid, run the flow if not credentials or credentials.invalid: flow = flow_from_clientsecrets(CLIENT_SECRETS_FILE, scope=[DRIVE_SCOPE]) credentials = run_flow(flow, storage) service = build('drive', 'v3', credentials=credentials) file_metadata = { 'name': os.path.basename(video_file), 'mimeType': 'video/mp4' } if folder_id: file_metadata['parents'] = [folder_id] media = MediaFileUpload(video_file, mimetype='video/mp4', resumable=True) file = service.files().create(body=file_metadata, media_body=media, fields='id').execute() print('File ID: %s' % file.get('id')) def initialize_upload(youtube, options): tags = None if 'keywords' in options and options['keywords']: tags = options['keywords'].split(",") body = dict( snippet=dict( title=options['title'], description=options['description'], tags=tags, categoryId=options['category'] ), status=dict( privacyStatus=options['privacyStatus'] ) ) # Call the API's videos.insert method to create and upload the video. insert_request = youtube.videos().insert( part=",".join(body.keys()), body=body, # The chunksize parameter specifies the size of each chunk of data, in # bytes, that will be uploaded at a time. Set a higher value for # reliable connections as fewer chunks lead to faster uploads. Set a lower # value for better recovery on less reliable connections. # # Setting "chunksize" equal to -1 in the code below means that the entire # file will be uploaded in a single HTTP request. (If the upload fails, # it will still be retried where it left off.) This is usually a best # practice, but if you're using Python older than 2.6 or if you're # running on App Engine, you should set the chunksize to something like # 1024 * 1024 (1 megabyte). media_body=MediaFileUpload(options["file"], chunksize=-1, resumable=True) ) resumable_upload(insert_request) # This method implements an exponential backoff strategy to resume a # failed upload. def resumable_upload(insert_request): response = None error = None retry = 0 while response is None: try: print("Uploading file...") status, response = insert_request.next_chunk() if response is not None: if 'id' in response: print("Video id '%s' was successfully uploaded." % response['id']) else: exit("The upload failed with an unexpected response: %s" % response) except HttpError as e: if e.resp.status in RETRIABLE_STATUS_CODES: error = "A retriable HTTP error %d occurred:\n%s" % (e.resp.status, e.content) else: raise # except RETRIABLE_EXCEPTIONS as e: # error = "A retriable error occurred: %s" % e if error is not None: print(error) retry += 1 if retry > MAX_RETRIES: exit("No longer attempting to retry.") max_sleep = 2 ** retry sleep_seconds = random.random() * max_sleep print("Sleeping %f seconds and then retrying..." % sleep_seconds) time.sleep(sleep_seconds) # def eleven_labs_text_to_speech(text, output_file): # voice_ids = { # "ndntWUKwYjgJGYkvF6at", # "SVLJSgUbrKWfY8HvF2Xd", # "sjdiTCylizqR74A3ssv4", # } # # randomly pick one of the voices # voice_id = random.choice(list(voice_ids)) # url = f"https://api.elevenlabs.io/v1/text-to-speech/{voice_id}" # headers = { # "Accept": "audio/mpeg", # "Content-Type": "application/json", # "xi-api-key": ELEVENLABS_KEY # } # data = { # "text": text, # "model_id": "eleven_monolingual_v1", # "voice_settings": { # "stability": 0.5, # "similarity_boost": 0.5, # "speed": 0.3, # } # } # response = requests.post(url, json=data, headers=headers) # if response.status_code == 200: # with open(output_file, 'wb') as f: # for chunk in response.iter_content(chunk_size=1024): # f.write(chunk) # print(f"Audio content written to {output_file}") # else: # print(f"Failed to synthesize speech: {response.content}") def combine_audio_files(audio_files, output_file): combined = AudioSegment.empty() for file in audio_files: audio = AudioSegment.from_mp3(file) combined += audio combined.export(output_file, format="mp3") return output_file api_key = 'VhLwkCKi3iu5Pf37LXfz-Lp7hTW69EV8uw_hkLAPkiA' # Replace with your Unsplash API key background_image = fetch_random_nature_image(api_key) app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) def upload_video_to_tiktok(access_token: str, video_file_path: str): try: video_size = os.path.getsize(video_file_path) init_response = requests.post( 'https://open.tiktokapis.com/v2/post/publish/inbox/video/init/', headers={ 'Authorization': f'Bearer {access_token}', 'Content-Type': 'application/json; charset=UTF-8' }, json={ "source_info": { "source": "FILE_UPLOAD", "video_size": video_size, "chunk_size": video_size, "total_chunk_count": 1 } } ) if init_response.status_code != 200: raise Exception(f"Failed to initialize video upload: {init_response.status_code} {init_response.text}") init_data = init_response.json() if 'error' in init_data and init_data['error']['code'] != 'ok': raise Exception(f"Initialization error: {init_data['error']['message']}") publish_id = init_data['data']['publish_id'] upload_url = init_data['data']['upload_url'] with open(video_file_path, 'rb') as video_file: video_data = video_file.read() upload_response = requests.put( upload_url, headers={ 'Content-Type': 'video/mp4', 'Content-Range': f'bytes 0-{len(video_data) - 1}/{len(video_data)}' }, data=video_data ) if upload_response.status_code != 200: raise Exception(f"Failed to upload video: {upload_response.status_code} {upload_response.text}") status_response = requests.post( 'https://open.tiktokapis.com/v2/post/publish/status/fetch/', headers={ 'Authorization': f'Bearer {access_token}', 'Content-Type': 'application/json; charset=UTF-8' }, json={'publish_id': publish_id} ) if status_response.status_code != 200: raise Exception(f"Failed to fetch post status: {status_response.status_code} {status_response.text}") return status_response.json() except Exception as e: print(f"Exception occurred: {str(e)}") return {"status": "error", "message": str(e)} @app.get("/", tags=["home"]) def api_home(): return {'detail': 'Welcome to VideoGen!'} @app.get("/tiktok04mGYqnihbw3hRUasbHWxXu03zEGxXH9.txt") def api_tick(): return FileResponse(f"tiktok04mGYqnihbw3hRUasbHWxXu03zEGxXH9.txt") CLIENT_KEY = 'sbawybfvayitbc5i5u' CLIENT_SECRET = '1WBu9szNwKPiAw374VWty4EoVK8wtTWo' REDIRECT_URI = 'https://lakpriya-videogen-api.hf.space/tiktok_callback' @app.get("/tiktok_login") async def tiktok_login(): csrf_state = uuid.uuid4().hex response = RedirectResponse( url=f"https://www.tiktok.com/v2/auth/authorize/?client_key={CLIENT_KEY}&response_type=code&scope=user.info.basic,video.publish,video.upload&redirect_uri={REDIRECT_URI}&state={csrf_state}" ) response.set_cookie(key="csrf_state", value=csrf_state, max_age=600) return response @app.get("/tiktok_callback") async def tiktok_callback(request: Request): try: code = request.query_params.get('code') state = request.query_params.get('state') csrf_state = request.cookies.get('csrf_state') if state != csrf_state: raise HTTPException(status_code=400, detail="Invalid state parameter") # Exchange code for access token response = requests.post( 'https://open.tiktokapis.com/v2/oauth/token/', headers={ 'Content-Type': 'application/x-www-form-urlencoded' }, data={ 'client_key': CLIENT_KEY, 'client_secret': CLIENT_SECRET, 'code': code, 'grant_type': 'authorization_code', 'redirect_uri': REDIRECT_URI } ) # Check for successful response if response.status_code != 200: raise HTTPException(status_code=response.status_code, detail="Failed to exchange code for token") # Try parsing the JSON response token_response = response.json() # Check if there is an error in the response if "error" in token_response: raise HTTPException(status_code=400, detail=token_response.get("error_description", "Unknown error")) access_token = token_response.get('access_token') open_id = token_response.get('open_id') # Log the access token and open_id for debugging purposes print(f"Access token: {access_token}") print(f"Open ID: {open_id}") # Return a success message with the token details return {"message": "Authorization successful", "access_token": access_token, "open_id": open_id} except Exception as e: # Log the exception for debugging purposes print(f"Exception occurred: {str(e)}") raise HTTPException(status_code=500, detail="Internal Server Error") @app.get("/generate_video") def generate_video(request: Request): access_token = request.query_params.get('access_token') try: api_key = 'VhLwkCKi3iu5Pf37LXfz-Lp7hTW69EV8uw_hkLAPkiA' # Replace with your Unsplash API key background_image = fetch_random_nature_image(api_key) if background_image: fetch_reddit_data('Glitch_in_the_Matrix') reddit_data = read_json('top_post.json') title = reddit_data.get('title') selftext = reddit_data.get('selftext') # Split title into sentences sentences = nltk.sent_tokenize(selftext) # Generate audio for each sentence and get durations audio_files, audio_durations = tts_per_sentence(sentences, audio_output_folder) # Create and save the video video_filename = "reddit_post_video_cv2.mp4" create_video_from_title(title, sentences, background_image, video_filename, audio_durations) # Combine all audio files into one (if needed) combined_audio_file = combine_audio_files(audio_files, 'combined_voiceover.mp3') # Implement this function final_filename = "video_" + str(uuid.uuid4()) # Combine the final video and audio combine_audio_video(video_filename, combined_audio_file, final_filename + '.mp4') video_path = os.path.join(output_folder, final_filename + '.mp4') upload_video_to_tiktok(access_token, video_path) return {"status": "success", "filename": final_filename + '.mp4'} else: return {"status": "failed", "message": "Failed to fetch background image"} except Exception as e: return {"status": "error", "message": str(e)} # Run the application using Uvicorn if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=8000) # if background_image: # fetch_reddit_data('Glitch_in_the_Matrix') # reddit_data = read_json('top_post.json') # title = reddit_data.get('title') # selftext = reddit_data.get('selftext') # # Split title into sentences # sentences = nltk.sent_tokenize(selftext) # # Generate audio for each sentence and get durations # audio_files, audio_durations = tts_per_sentence(sentences, 'audio') # # Create and save the video # create_video_from_title(title, sentences, background_image, "reddit_post_video_cv2.mp4", audio_durations) # # Combine all audio files into one (if needed) # combined_audio_file = combine_audio_files(audio_files, 'combined_voiceover.mp3') # Implement this function # filename = "video_" + str(uuid.uuid4()) # # Combine the final video and audio # combine_audio_video('reddit_post_video_cv2.mp4', combined_audio_file, filename + '.mp4') # if background_image: # # Example usage # fetch_reddit_data('Glitch_in_the_Matrix') # # Read data from JSON # reddit_data = read_json('top_post.json') # Change filename if needed # title = reddit_data.get('title') # filename = "video_" + str(uuid.uuid4()) # # Convert text to speech # # voiceover_file = text_to_speech(title, 'voiceover.mp3') # voiceover_file = eleven_labs_text_to_speech(title, 'voiceover.mp3') # # Get audio duration # audio_duration = get_audio_duration('voiceover.mp3') # # Create and save the video # create_video_from_title(title, background_image, "reddit_post_video_cv2.mp4", audio_duration) # # Combine audio and video # combine_audio_video('reddit_post_video_cv2.mp4', 'voiceover.mp3', filename + '.mp4') # options = { # 'file': 'output/'+ filename + '.mp4', # 'title': "Amazing Facts Revealed: Unveiling the World's Hidden Wonders #shorts", # 'description': "Welcome to our latest YouTube video, 'Amazing Facts Revealed: Unveiling the World's Hidden Wonders'! In this enthralling episode, we dive deep into the most astonishing and lesser-known facts about our world. From the mysteries of the deep sea to the enigmas of outer space, we cover it all. Get ready to be amazed by incredible scientific discoveries, historical secrets, and mind-blowing natural phenomena. Each fact is meticulously researched and presented with stunning visuals and engaging narration. Don't forget to like, share, and subscribe for more fascinating content. Stay curious and let's explore the wonders of our world together #shorts", # 'category': "22", # 'keywords': "facts, shorts, funny", # 'privacyStatus': "private" # } # try: # youtube = get_authenticated_service() # initialize_upload(youtube, options) # upload_video_to_drive('output/'+ filename + '.mp4','1t2lcYNLgz6FTeabzccY_06rvcnTGdQiR') # except HttpError as e: # print("An HTTP error %d occurred:\n%s" % (e.resp.status, e.content))