import pandas as pd from torchvision import transforms from detecto import core from detecto import utils from detecto.visualize import show_labeled_image from detecto.core import Model import matplotlib.pyplot as plt import matplotlib.image as img transform_img = transforms.Compose([transforms.ToPILImage(), transforms.Resize(400), transforms.RandomHorizontalFlip(0.5), transforms.ToTensor(), utils.normalize_transform(),]) labels = ['damage','BG'] model = Model.load('/content/drive/MyDrive/Trained_Model.pth', labels) def prediction_defect(new_image,model = model): '''Function takes input of the damaged vehicle and provides the damaged area of the vehicle ''' image = utils.read_image(new_image) new_image = transform_img(image) labels, boxes, scores = model.predict(image) top = len(scores[scores > .5]) show_labeled_image(image, boxes[:top], labels[:top])