Redmind_GPT_API / services /file_upload_service.py
lakshmivairamani's picture
Upload 16 files
8bac072 verified
import io
import os
import tempfile
import hashlib
import json
import logging
import pandas as pd
from datetime import datetime
from dotenv import load_dotenv
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from PyPDF2 import PdfReader
from docx import Document
# from transformers import pipeline
# Load environment variables
load_dotenv()
open_api_key_token = os.getenv('OPENAI_API_KEY')
class FileHandler:
def __init__(self, vector_db_path):
self.vector_db_path = vector_db_path
self.embeddings = OpenAIEmbeddings(api_key=open_api_key_token)
# self.summarizer = pipeline("summarization")
def prepare_metadata_string(self, document_name, document_description, department, version, last_updated):
metadata_string = f"\nDocument Name: {document_name}\nDocument Description: {document_description}\nDepartment: {department}\nVersion: {version}\nLast Updated: {last_updated}"
return metadata_string
async def handle_file_upload(self, file, document_name, document_description, department, version, last_updated):
content = await file.read()
file_hash = hashlib.md5(content).hexdigest()
file_key = f"{file.filename}_{file_hash}"
vector_store_path = os.path.join(self.vector_db_path, f"{file_key}.vectorstore")
metadata_path = os.path.join(self.vector_db_path, f"{file_key}.metadata.json")
metadata_string = self.prepare_metadata_string(document_name, document_description, department, version,
last_updated)
if os.path.exists(vector_store_path) and os.path.exists(metadata_path):
with open(metadata_path, 'r') as md_file:
metadata = json.load(md_file)
return {'path': vector_store_path, 'metadata': metadata, 'status': 'skipped - duplicate'}
if file.filename.endswith('.csv') or file.filename.endswith('.xlsx'):
texts = self.load_and_split_table(content, file.filename,metadata_string)
else:
texts = await self.load_and_split_text(content, file.filename,metadata_string)
vector_store = self.create_vector_store(texts)
vector_store.save_local(vector_store_path)
metadata = {
'filename': file.filename,
'document_name': document_name,
'document_description': document_description,
'department': department,
'version': version,
'last_updated': last_updated,
'hash': file_hash,
'upload_date': datetime.now().isoformat(),
'file_path': vector_store_path,
'file_size': len(content),
'content_type': file.content_type
}
with open(metadata_path, 'w') as md_file:
json.dump(metadata, md_file)
return {"message": "File processed and vector store created successfully", "file_metadata": metadata}
def summarize_text(self, text):
try:
summary = self.summarizer(text, max_length=150, min_length=10, do_sample=False)
logging.info("Text summarization successful")
return summary[0]['summary_text']
except Exception as e:
logging.error(f"Error in summarization: {str(e)}")
# Log error or handle exception
return text # Return original text if summarization is not possible
def load_and_split_table(self, content, filename,metadata_string):
# Handle CSV and Excel file reading
if filename.endswith('.csv'):
df = pd.read_csv(io.StringIO(content.decode('utf-8')))
else: # Excel
df = pd.read_excel(io.BytesIO(content))
text = df.to_string(index=False) # Convert DataFrame to string
text += metadata_string # Append metadata to the text
return self.split_text(text)
async def load_and_split_text(self, content, filename,metadata_string):
with tempfile.NamedTemporaryFile(delete=False, mode='w+b', suffix=f"_{filename}") as temp_file:
temp_file.write(content)
temp_file.flush()
temp_file_path = temp_file.name
# Ensure the temp file is closed before reading from it
if filename.endswith('.pdf'):
texts = await self.load_and_split_pdf(temp_file_path,metadata_string)
elif filename.endswith('.docx'):
texts = await self.load_and_split_docx(temp_file_path,metadata_string)
elif filename.endswith('.txt'):
texts = await self.load_and_split_txt(temp_file_path,metadata_string)
# Apply summarization here to each text segment
# summarized_texts = [self.summarize_text(text) for text in texts]
# os.unlink(temp_file_path) # Explicitly remove the temporary file
# return summarized_texts
os.unlink(temp_file_path) # Explicitly remove the temporary file
return texts
async def load_and_split_pdf(self, pdf_path,metadata_string):
reader = PdfReader(pdf_path)
text = ''
for page in reader.pages:
text += page.extract_text() or ""
text += metadata_string # Append metadata to the text
return self.split_text(text)
async def load_and_split_docx(self, docx_path,metadata_string):
doc = Document(docx_path)
text = '\n'.join([paragraph.text for paragraph in doc.paragraphs if paragraph.text])
text += metadata_string # Append metadata to the text
return self.split_text(text)
async def load_and_split_txt(self, txt_path,metadata_string):
with open(txt_path, 'r', encoding='utf-8') as file:
text = file.read()
text += metadata_string # Append metadata to the text
return self.split_text(text)
def split_text(self, text):
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
return text_splitter.split_text(text)
def create_vector_store(self, texts):
return FAISS.from_texts(texts, self.embeddings)