File size: 13,468 Bytes
1df74c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
#!/usr/bin/env python3
import statistics
import time
from collections import defaultdict, deque
from tqdm import tqdm as tqdm_class
from typing import Generator, Iterable, TypeVar
from typing_extensions import Self
import torch
import torch.distributed as dist
from .output import ansi, prints, get_ansi_len
__all__ = ["SmoothedValue", "MetricLogger"]
MB = 1 << 20
T = TypeVar("T")
class SmoothedValue:
r"""Track a series of values and provide access to smoothed values over a
window or the global series average.
See Also:
https://github.com/pytorch/vision/blob/main/references/classification/utils.py
Args:
name (str): Name string.
window_size (int): The :attr:`maxlen` of :class:`~collections.deque`.
fmt (str): The format pattern of ``str(self)``.
Attributes:
name (str): Name string.
fmt (str): The string pattern.
deque (~collections.deque): The unique data series.
count (int): The amount of data.
total (float): The sum of all data.
median (float): The median of :attr:`deque`.
avg (float): The avg of :attr:`deque`.
global_avg (float): :math:`\frac{\text{total}}{\text{count}}`
max (float): The max of :attr:`deque`.
min (float): The min of :attr:`deque`.
last_value (float): The last value of :attr:`deque`.
"""
def __init__(
self, name: str = "", window_size: int = None, fmt: str = "{global_avg:.3f}"
):
self.name = name
self.deque: deque[float] = deque(maxlen=window_size)
self.count: int = 0
self.total: float = 0.0
self.fmt = fmt
def update(self, value: float, n: int = 1) -> Self:
r"""Update :attr:`n` pieces of data with same :attr:`value`.
.. code-block:: python
self.deque.append(value)
self.total += value * n
self.count += n
Args:
value (float): the value to update.
n (int): the number of data with same :attr:`value`.
Returns:
SmoothedValue: return ``self`` for stream usage.
"""
self.deque.append(value)
self.total += value * n
self.count += n
return self
def update_list(self, value_list: list[float]) -> Self:
r"""Update :attr:`value_list`.
.. code-block:: python
for value in value_list:
self.deque.append(value)
self.total += value
self.count += len(value_list)
Args:
value_list (list[float]): the value list to update.
Returns:
SmoothedValue: return ``self`` for stream usage.
"""
for value in value_list:
self.deque.append(value)
self.total += value
self.count += len(value_list)
return self
def reset(self) -> Self:
r"""Reset ``deque``, ``count`` and ``total`` to be empty.
Returns:
SmoothedValue: return ``self`` for stream usage.
"""
self.deque = deque(maxlen=self.deque.maxlen)
self.count = 0
self.total = 0.0
return self
def synchronize_between_processes(self):
r"""
Warning:
Does NOT synchronize the deque!
"""
if not (dist.is_available() and dist.is_initialized()):
return
t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda")
dist.barrier()
dist.all_reduce(t)
t = t.tolist()
self.count = int(t[0])
self.total = float(t[1])
@property
def median(self) -> float:
try:
return statistics.median(self.deque)
except Exception:
return 0.0
@property
def avg(self) -> float:
try:
return statistics.mean(self.deque)
except Exception:
return 0.0
@property
def global_avg(self) -> float:
try:
return self.total / self.count
except Exception:
return 0.0
@property
def max(self) -> float:
try:
return max(self.deque)
except Exception:
return 0.0
@property
def min(self) -> float:
try:
return min(self.deque)
except Exception:
return 0.0
@property
def last_value(self) -> float:
try:
return self.deque[-1]
except Exception:
return 0.0
def __str__(self):
return self.fmt.format(
name=self.name,
count=self.count,
total=self.total,
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
min=self.min,
max=self.max,
last_value=self.last_value,
)
def __format__(self, format_spec: str) -> str:
return self.__str__()
class MetricLogger:
r"""
See Also:
https://github.com/pytorch/vision/blob/main/references/classification/utils.py
Args:
delimiter (str): The delimiter to join different meter strings.
Defaults to ``''``.
meter_length (int): The minimum length for each meter.
Defaults to ``20``.
tqdm (bool): Whether to use tqdm to show iteration information.
Defaults to ``env['tqdm']``.
indent (int): The space indent for the entire string.
Defaults to ``0``.
Attributes:
meters (dict[str, SmoothedValue]): The meter dict.
iter_time (SmoothedValue): Iteration time meter.
data_time (SmoothedValue): Data loading time meter.
memory (SmoothedValue): Memory usage meter.
"""
def __init__(
self,
delimiter: str = "",
meter_length: int = 20,
tqdm: bool = True,
indent: int = 0,
**kwargs,
):
self.meters: defaultdict[str, SmoothedValue] = defaultdict(SmoothedValue)
self.create_meters(**kwargs)
self.delimiter = delimiter
self.meter_length = meter_length
self.tqdm = tqdm
self.indent = indent
self.iter_time = SmoothedValue()
self.data_time = SmoothedValue()
self.memory = SmoothedValue(fmt="{max:.0f}")
def create_meters(self, **kwargs: str) -> Self:
r"""Create meters with specific ``fmt`` in :attr:`self.meters`.
``self.meters[meter_name] = SmoothedValue(fmt=fmt)``
Args:
**kwargs: ``(meter_name: fmt)``
Returns:
MetricLogger: return ``self`` for stream usage.
"""
for k, v in kwargs.items():
self.meters[k] = SmoothedValue(fmt="{global_avg:.3f}" if v is None else v)
return self
def update(self, n: int = 1, **kwargs: float) -> Self:
r"""Update values to :attr:`self.meters` by calling :meth:`SmoothedValue.update()`.
``self.meters[meter_name].update(float(value), n=n)``
Args:
n (int): the number of data with same value.
**kwargs: ``{meter_name: value}``.
Returns:
MetricLogger: return ``self`` for stream usage.
"""
for k, v in kwargs.items():
if k not in self.meters:
self.meters[k] = SmoothedValue()
self.meters[k].update(float(v), n=n)
return self
def update_list(self, **kwargs: list) -> Self:
r"""Update values to :attr:`self.meters` by calling :meth:`SmoothedValue.update_list()`.
``self.meters[meter_name].update_list(value_list)``
Args:
**kwargs: ``{meter_name: value_list}``.
Returns:
MetricLogger: return ``self`` for stream usage.
"""
for k, v in kwargs.items():
self.meters[k].update_list(v)
return self
def reset(self) -> Self:
r"""Reset meter in :attr:`self.meters` by calling :meth:`SmoothedValue.reset()`.
Returns:
MetricLogger: return ``self`` for stream usage.
"""
for meter in self.meters.values():
meter.reset()
return self
def get_str(self, cut_too_long: bool = True, strip: bool = True, **kwargs) -> str:
r"""Generate formatted string based on keyword arguments.
``key: value`` with max length to be :attr:`self.meter_length`.
Args:
cut_too_long (bool): Whether to cut too long values to first 5 characters.
Defaults to ``True``.
strip (bool): Whether to strip trailing whitespaces.
Defaults to ``True``.
**kwargs: Keyword arguments to generate string.
"""
str_list: list[str] = []
for k, v in kwargs.items():
v_str = str(v)
_str: str = "{green}{k}{reset}: {v}".format(k=k, v=v_str, **ansi)
max_length = self.meter_length + get_ansi_len(_str)
if cut_too_long:
_str = _str[:max_length]
str_list.append(_str.ljust(max_length))
_str = self.delimiter.join(str_list)
if strip:
_str = _str.rstrip()
return _str
def __getattr__(self, attr: str) -> float:
if attr in self.meters:
return self.meters[attr]
if attr in vars(self): # TODO: use hasattr
return vars(self)[attr]
raise AttributeError(
"'{}' object has no attribute '{}'".format(type(self).__name__, attr)
)
def __str__(self) -> str:
return self.get_str(**self.meters)
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def log_every(
self,
iterable: Iterable[T],
header: str = "",
tqdm: bool = None,
tqdm_header: str = "Iter",
indent: int = None,
verbose: int = 1,
) -> Generator[T, None, None]:
r"""Wrap an :class:`collections.abc.Iterable` with formatted outputs.
* Middle Output:
``{tqdm_header}: [ current / total ] str(self) {memory} {iter_time} {data_time} {time}<{remaining}``
* Final Output
``{header} str(self) {memory} {iter_time} {data_time} {total_time}``
Args:
iterable (~collections.abc.Iterable): The raw iterator.
header (str): The header string for final output.
Defaults to ``''``.
tqdm (bool): Whether to use tqdm to show iteration information.
Defaults to ``self.tqdm``.
tqdm_header (str): The header string for middle output.
Defaults to ``'Iter'``.
indent (int): The space indent for the entire string.
if ``None``, use ``self.indent``.
Defaults to ``None``.
verbose (int): The verbose level of output information.
"""
tqdm = tqdm if tqdm is not None else self.tqdm
indent = indent if indent is not None else self.indent
iterator = iterable
if len(header) != 0:
header = header.ljust(30 + get_ansi_len(header))
if tqdm:
length = len(str(len(iterable)))
pattern: str = (
"{tqdm_header}: {blue_light}"
"[ {red}{{n_fmt:>{length}}}{blue_light} "
"/ {red}{{total_fmt}}{blue_light} ]{reset}"
).format(tqdm_header=tqdm_header, length=length, **ansi)
offset = len(f"{{n_fmt:>{length}}}{{total_fmt}}") - 2 * length
pattern = pattern.ljust(30 + offset + get_ansi_len(pattern))
time_str = self.get_str(time="{elapsed}<{remaining}", cut_too_long=False)
bar_format = f"{pattern}{{desc}}{time_str}"
iterator = tqdm_class(iterable, leave=False, bar_format=bar_format)
self.iter_time.reset()
self.data_time.reset()
self.memory.reset()
end = time.time()
start_time = time.time()
for obj in iterator:
cur_data_time = time.time() - end
self.data_time.update(cur_data_time)
yield obj
cur_iter_time = time.time() - end
self.iter_time.update(cur_iter_time)
if torch.cuda.is_available():
cur_memory = torch.cuda.max_memory_allocated() / MB
self.memory.update(cur_memory)
if tqdm:
_dict = {k: v for k, v in self.meters.items()}
if verbose > 2 and torch.cuda.is_available():
_dict.update(memory=f"{cur_memory:.0f} MB")
if verbose > 1:
_dict.update(
iter=f"{cur_iter_time:.3f} s", data=f"{cur_data_time:.3f} s"
)
iterator.set_description_str(self.get_str(**_dict, strip=False))
end = time.time()
self.synchronize_between_processes()
total_time = time.time() - start_time
total_time_str = tqdm_class.format_interval(total_time)
_dict = {k: v for k, v in self.meters.items()}
if verbose > 2 and torch.cuda.is_available():
_dict.update(memory=f"{str(self.memory)} MB")
if verbose > 1:
_dict.update(
iter=f"{str(self.iter_time)} s", data=f"{str(self.data_time)} s"
)
_dict.update(time=total_time_str)
prints(self.delimiter.join([header, self.get_str(**_dict)]), indent=indent)
|