|
""" refer from https://github.com/zceng/LVCNet """ |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch import nn |
|
from torch.nn.utils.parametrizations import weight_norm |
|
|
|
from .amp import AMPBlock |
|
|
|
|
|
class KernelPredictor(torch.nn.Module): |
|
"""Kernel predictor for the location-variable convolutions""" |
|
|
|
def __init__( |
|
self, |
|
cond_channels, |
|
conv_in_channels, |
|
conv_out_channels, |
|
conv_layers, |
|
conv_kernel_size=3, |
|
kpnet_hidden_channels=64, |
|
kpnet_conv_size=3, |
|
kpnet_dropout=0.0, |
|
kpnet_nonlinear_activation="LeakyReLU", |
|
kpnet_nonlinear_activation_params={"negative_slope": 0.1}, |
|
): |
|
""" |
|
Args: |
|
cond_channels (int): number of channel for the conditioning sequence, |
|
conv_in_channels (int): number of channel for the input sequence, |
|
conv_out_channels (int): number of channel for the output sequence, |
|
conv_layers (int): number of layers |
|
""" |
|
super().__init__() |
|
|
|
self.conv_in_channels = conv_in_channels |
|
self.conv_out_channels = conv_out_channels |
|
self.conv_kernel_size = conv_kernel_size |
|
self.conv_layers = conv_layers |
|
|
|
kpnet_kernel_channels = conv_in_channels * conv_out_channels * conv_kernel_size * conv_layers |
|
kpnet_bias_channels = conv_out_channels * conv_layers |
|
|
|
self.input_conv = nn.Sequential( |
|
weight_norm(nn.Conv1d(cond_channels, kpnet_hidden_channels, 5, padding=2, bias=True)), |
|
getattr(nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), |
|
) |
|
|
|
self.residual_convs = nn.ModuleList() |
|
padding = (kpnet_conv_size - 1) // 2 |
|
for _ in range(3): |
|
self.residual_convs.append( |
|
nn.Sequential( |
|
nn.Dropout(kpnet_dropout), |
|
weight_norm( |
|
nn.Conv1d( |
|
kpnet_hidden_channels, |
|
kpnet_hidden_channels, |
|
kpnet_conv_size, |
|
padding=padding, |
|
bias=True, |
|
) |
|
), |
|
getattr(nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), |
|
weight_norm( |
|
nn.Conv1d( |
|
kpnet_hidden_channels, |
|
kpnet_hidden_channels, |
|
kpnet_conv_size, |
|
padding=padding, |
|
bias=True, |
|
) |
|
), |
|
getattr(nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params), |
|
) |
|
) |
|
self.kernel_conv = weight_norm( |
|
nn.Conv1d( |
|
kpnet_hidden_channels, |
|
kpnet_kernel_channels, |
|
kpnet_conv_size, |
|
padding=padding, |
|
bias=True, |
|
) |
|
) |
|
self.bias_conv = weight_norm( |
|
nn.Conv1d( |
|
kpnet_hidden_channels, |
|
kpnet_bias_channels, |
|
kpnet_conv_size, |
|
padding=padding, |
|
bias=True, |
|
) |
|
) |
|
|
|
def forward(self, c): |
|
""" |
|
Args: |
|
c (Tensor): the conditioning sequence (batch, cond_channels, cond_length) |
|
""" |
|
batch, _, cond_length = c.shape |
|
c = self.input_conv(c) |
|
for residual_conv in self.residual_convs: |
|
residual_conv.to(c.device) |
|
c = c + residual_conv(c) |
|
k = self.kernel_conv(c) |
|
b = self.bias_conv(c) |
|
kernels = k.contiguous().view( |
|
batch, |
|
self.conv_layers, |
|
self.conv_in_channels, |
|
self.conv_out_channels, |
|
self.conv_kernel_size, |
|
cond_length, |
|
) |
|
bias = b.contiguous().view( |
|
batch, |
|
self.conv_layers, |
|
self.conv_out_channels, |
|
cond_length, |
|
) |
|
|
|
return kernels, bias |
|
|
|
|
|
class LVCBlock(torch.nn.Module): |
|
"""the location-variable convolutions""" |
|
|
|
def __init__( |
|
self, |
|
in_channels, |
|
cond_channels, |
|
stride, |
|
dilations=[1, 3, 9, 27], |
|
lReLU_slope=0.2, |
|
conv_kernel_size=3, |
|
cond_hop_length=256, |
|
kpnet_hidden_channels=64, |
|
kpnet_conv_size=3, |
|
kpnet_dropout=0.0, |
|
add_extra_noise=False, |
|
downsampling=False, |
|
): |
|
super().__init__() |
|
|
|
self.add_extra_noise = add_extra_noise |
|
|
|
self.cond_hop_length = cond_hop_length |
|
self.conv_layers = len(dilations) |
|
self.conv_kernel_size = conv_kernel_size |
|
|
|
self.kernel_predictor = KernelPredictor( |
|
cond_channels=cond_channels, |
|
conv_in_channels=in_channels, |
|
conv_out_channels=2 * in_channels, |
|
conv_layers=len(dilations), |
|
conv_kernel_size=conv_kernel_size, |
|
kpnet_hidden_channels=kpnet_hidden_channels, |
|
kpnet_conv_size=kpnet_conv_size, |
|
kpnet_dropout=kpnet_dropout, |
|
kpnet_nonlinear_activation_params={"negative_slope": lReLU_slope}, |
|
) |
|
|
|
if downsampling: |
|
self.convt_pre = nn.Sequential( |
|
nn.LeakyReLU(lReLU_slope), |
|
weight_norm(nn.Conv1d(in_channels, in_channels, 2 * stride + 1, padding="same")), |
|
nn.AvgPool1d(stride, stride), |
|
) |
|
else: |
|
if stride == 1: |
|
self.convt_pre = nn.Sequential( |
|
nn.LeakyReLU(lReLU_slope), |
|
weight_norm(nn.Conv1d(in_channels, in_channels, 1)), |
|
) |
|
else: |
|
self.convt_pre = nn.Sequential( |
|
nn.LeakyReLU(lReLU_slope), |
|
weight_norm( |
|
nn.ConvTranspose1d( |
|
in_channels, |
|
in_channels, |
|
2 * stride, |
|
stride=stride, |
|
padding=stride // 2 + stride % 2, |
|
output_padding=stride % 2, |
|
) |
|
), |
|
) |
|
|
|
self.amp_block = AMPBlock(in_channels) |
|
|
|
self.conv_blocks = nn.ModuleList() |
|
for d in dilations: |
|
self.conv_blocks.append( |
|
nn.Sequential( |
|
nn.LeakyReLU(lReLU_slope), |
|
weight_norm(nn.Conv1d(in_channels, in_channels, conv_kernel_size, dilation=d, padding="same")), |
|
nn.LeakyReLU(lReLU_slope), |
|
) |
|
) |
|
|
|
def forward(self, x, c): |
|
"""forward propagation of the location-variable convolutions. |
|
Args: |
|
x (Tensor): the input sequence (batch, in_channels, in_length) |
|
c (Tensor): the conditioning sequence (batch, cond_channels, cond_length) |
|
|
|
Returns: |
|
Tensor: the output sequence (batch, in_channels, in_length) |
|
""" |
|
_, in_channels, _ = x.shape |
|
|
|
x = self.convt_pre(x) |
|
|
|
|
|
x = self.amp_block(x) |
|
|
|
kernels, bias = self.kernel_predictor(c) |
|
|
|
if self.add_extra_noise: |
|
|
|
a, b = x.chunk(2, dim=1) |
|
b = b + torch.randn_like(b) * 0.1 |
|
x = torch.cat([a, b], dim=1) |
|
|
|
for i, conv in enumerate(self.conv_blocks): |
|
output = conv(x) |
|
|
|
k = kernels[:, i, :, :, :, :] |
|
b = bias[:, i, :, :] |
|
|
|
output = self.location_variable_convolution( |
|
output, k, b, hop_size=self.cond_hop_length |
|
) |
|
x = x + torch.sigmoid(output[:, :in_channels, :]) * torch.tanh( |
|
output[:, in_channels:, :] |
|
) |
|
|
|
return x |
|
|
|
def location_variable_convolution(self, x, kernel, bias, dilation=1, hop_size=256): |
|
"""perform location-variable convolution operation on the input sequence (x) using the local convolution kernl. |
|
Time: 414 μs ± 309 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each), test on NVIDIA V100. |
|
Args: |
|
x (Tensor): the input sequence (batch, in_channels, in_length). |
|
kernel (Tensor): the local convolution kernel (batch, in_channel, out_channels, kernel_size, kernel_length) |
|
bias (Tensor): the bias for the local convolution (batch, out_channels, kernel_length) |
|
dilation (int): the dilation of convolution. |
|
hop_size (int): the hop_size of the conditioning sequence. |
|
Returns: |
|
(Tensor): the output sequence after performing local convolution. (batch, out_channels, in_length). |
|
""" |
|
batch, _, in_length = x.shape |
|
batch, _, out_channels, kernel_size, kernel_length = kernel.shape |
|
|
|
assert in_length == ( |
|
kernel_length * hop_size |
|
), f"length of (x, kernel) is not matched, {in_length} != {kernel_length} * {hop_size}" |
|
|
|
padding = dilation * int((kernel_size - 1) / 2) |
|
x = F.pad(x, (padding, padding), "constant", 0) |
|
x = x.unfold(2, hop_size + 2 * padding, hop_size) |
|
|
|
if hop_size < dilation: |
|
x = F.pad(x, (0, dilation), "constant", 0) |
|
x = x.unfold( |
|
3, dilation, dilation |
|
) |
|
x = x[:, :, :, :, :hop_size] |
|
x = x.transpose(3, 4) |
|
x = x.unfold(4, kernel_size, 1) |
|
|
|
o = torch.einsum("bildsk,biokl->bolsd", x, kernel) |
|
o = o.to(memory_format=torch.channels_last_3d) |
|
bias = bias.unsqueeze(-1).unsqueeze(-1).to(memory_format=torch.channels_last_3d) |
|
o = o + bias |
|
o = o.contiguous().view(batch, out_channels, -1) |
|
|
|
return o |
|
|