zhzluke96 commited on
Commit
ec6a7d0
·
1 Parent(s): 02e90e4
modules/SynthesizeSegments.py CHANGED
@@ -1,15 +1,15 @@
1
- import numpy as np
2
  from pydub import AudioSegment
3
  from typing import Any, List, Dict, Union
4
  from scipy.io.wavfile import write
5
  import io
 
6
  from modules.utils.audio import time_stretch, pitch_shift
7
  from modules import generate_audio
8
  from modules.normalization import text_normalize
9
  import logging
10
  import json
11
- import random
12
  import copy
 
13
 
14
  from modules.speaker import Speaker
15
 
@@ -55,8 +55,8 @@ def to_number(value, t, default=0):
55
 
56
 
57
  class SynthesizeSegments:
58
- batch_default_spk_seed = int(np.random.randint(0, 2**32 - 1))
59
- batch_default_infer_seed = int(np.random.randint(0, 2**32 - 1))
60
 
61
  def __init__(self, batch_size: int = 8):
62
  self.batch_size = batch_size
 
 
1
  from pydub import AudioSegment
2
  from typing import Any, List, Dict, Union
3
  from scipy.io.wavfile import write
4
  import io
5
+ from modules.utils import rng
6
  from modules.utils.audio import time_stretch, pitch_shift
7
  from modules import generate_audio
8
  from modules.normalization import text_normalize
9
  import logging
10
  import json
 
11
  import copy
12
+ import numpy as np
13
 
14
  from modules.speaker import Speaker
15
 
 
55
 
56
 
57
  class SynthesizeSegments:
58
+ batch_default_spk_seed = rng.np_rng()
59
+ batch_default_infer_seed = rng.np_rng()
60
 
61
  def __init__(self, batch_size: int = 8):
62
  self.batch_size = batch_size
modules/utils/SeedContext.py CHANGED
@@ -1,14 +1,16 @@
1
  import torch
2
  import random
3
  import numpy as np
 
4
 
5
 
6
  def deterministic(seed=0):
7
  random.seed(seed)
8
  np.random.seed(seed)
9
- torch.manual_seed(seed)
 
10
  if torch.cuda.is_available():
11
- torch.cuda.manual_seed_all(seed)
12
  torch.backends.cudnn.deterministic = True
13
  torch.backends.cudnn.benchmark = False
14
 
 
1
  import torch
2
  import random
3
  import numpy as np
4
+ from modules.utils import rng
5
 
6
 
7
  def deterministic(seed=0):
8
  random.seed(seed)
9
  np.random.seed(seed)
10
+ torch_rn = rng.convert_np_to_torch(seed)
11
+ torch.manual_seed(torch_rn)
12
  if torch.cuda.is_available():
13
+ torch.cuda.manual_seed_all(torch_rn)
14
  torch.backends.cudnn.deterministic = True
15
  torch.backends.cudnn.benchmark = False
16
 
modules/utils/rng.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import random
4
+
5
+ TORCH_RNG_MAX = -0x8000000000000000
6
+ TORCH_RNG_MIN = 0xFFFFFFFFFFFFFFFF
7
+
8
+ NP_RNG_MAX = np.iinfo(np.uint32).max
9
+ NP_RNG_MIN = 0
10
+
11
+
12
+ def troch_rng(seed: int):
13
+ torch.manual_seed(seed)
14
+ random_float = torch.empty(1).uniform_().item()
15
+ torch_rn = int(random_float * (TORCH_RNG_MAX - TORCH_RNG_MIN) + TORCH_RNG_MIN)
16
+ np_rn = int(random_float * (NP_RNG_MAX - NP_RNG_MIN) + NP_RNG_MIN)
17
+ return torch_rn, np_rn
18
+
19
+
20
+ def convert_np_to_torch(np_rn: int):
21
+ random_float = (np_rn - NP_RNG_MIN) / (NP_RNG_MAX - NP_RNG_MIN)
22
+ torch_rn = int(random_float * (TORCH_RNG_MAX - TORCH_RNG_MIN) + TORCH_RNG_MIN)
23
+ return torch_rn
24
+
25
+
26
+ def np_rng():
27
+ return int(np.random.randint(NP_RNG_MIN, NP_RNG_MAX, dtype=np.uint32))
28
+
29
+
30
+ if __name__ == "__main__":
31
+ import random
32
+
33
+ s1 = np_rng()
34
+ s2 = troch_rng(s1)
35
+ print(f"s1 {s1} => s2: {s2}")
webui.py CHANGED
@@ -69,6 +69,8 @@ def segments_length_limit(segments, total_max: int):
69
  ret_segments = []
70
  total_len = 0
71
  for seg in segments:
 
 
72
  total_len += len(seg["text"])
73
  if total_len > total_max:
74
  break
 
69
  ret_segments = []
70
  total_len = 0
71
  for seg in segments:
72
+ if "text" not in seg:
73
+ continue
74
  total_len += len(seg["text"])
75
  if total_len > total_max:
76
  break