Update app.py
Browse files
app.py
CHANGED
@@ -19,20 +19,22 @@ CORS(app)
|
|
19 |
|
20 |
logger = get_logger()
|
21 |
logger.warning('Entering application')
|
22 |
-
os.environ["TOKENIZERS_PARALLELISM"] = "
|
23 |
|
24 |
def load_model():
|
25 |
logger.warning('Entering load transformer')
|
26 |
-
|
27 |
-
with open("models/news_classification_labelencoder.bin", "rb") as model_file_obj:
|
28 |
label_encoder = cloudpickle.load(model_file_obj)
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
32 |
logger.warning('Exiting load transformer')
|
33 |
-
return
|
34 |
|
35 |
-
|
36 |
vectorizer = TextVectorizer()
|
37 |
collection = get_milvus_collection()
|
38 |
sent_model, ce_model = load_sentence_transformer()
|
@@ -50,8 +52,8 @@ def update_news():
|
|
50 |
prediction_db_write = DBWrite(db_type="prediction")
|
51 |
old_news = db_read.read_news_from_db()
|
52 |
new_news = get_news()
|
53 |
-
news_df, prediction_df, is_db_updation_required = predict_news_category_similar_news(old_news, new_news,
|
54 |
-
|
55 |
if news_df is None:
|
56 |
raise Exception('Could not generate category predictions. Aborting the database insertion. No new articles are inserted into the collection.')
|
57 |
|
|
|
19 |
|
20 |
logger = get_logger()
|
21 |
logger.warning('Entering application')
|
22 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
23 |
|
24 |
def load_model():
|
25 |
logger.warning('Entering load transformer')
|
26 |
+
with open("models/label_encoder.bin", "rb") as model_file_obj:
|
|
|
27 |
label_encoder = cloudpickle.load(model_file_obj)
|
28 |
+
|
29 |
+
with open("models/calibrated_model.bin", "rb") as model_file_obj:
|
30 |
+
calibrated_model = cloudpickle.load(model_file_obj)
|
31 |
+
|
32 |
+
tflite_model_path = os.path.join("models", "model.tflite")
|
33 |
+
calibrated_model.estimator.tflite_model_path = tflite_model_path
|
34 |
logger.warning('Exiting load transformer')
|
35 |
+
return calibrated_model, label_encoder
|
36 |
|
37 |
+
calibrated_model, label_encoder = load_model()
|
38 |
vectorizer = TextVectorizer()
|
39 |
collection = get_milvus_collection()
|
40 |
sent_model, ce_model = load_sentence_transformer()
|
|
|
52 |
prediction_db_write = DBWrite(db_type="prediction")
|
53 |
old_news = db_read.read_news_from_db()
|
54 |
new_news = get_news()
|
55 |
+
news_df, prediction_df, is_db_updation_required = predict_news_category_similar_news(old_news, new_news, calibrated_model, label_encoder,
|
56 |
+
collection, vectorizer, sent_model, ce_model)
|
57 |
if news_df is None:
|
58 |
raise Exception('Could not generate category predictions. Aborting the database insertion. No new articles are inserted into the collection.')
|
59 |
|