Spaces:
Runtime error
Runtime error
File size: 6,248 Bytes
00cb073 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import os
#os.environ['CUDA_VISIBLE_DEVICES'] = "0"
import numpy as np
import cv2
import math
import argparse
from tqdm import tqdm
import torch
from torch import nn
from torchvision import transforms
import torch.nn.functional as F
from model.raft.core.raft import RAFT
from model.raft.core.utils.utils import InputPadder
from model.bisenet.model import BiSeNet
from model.stylegan.model import Downsample
class Options():
def __init__(self):
self.parser = argparse.ArgumentParser(description="Smooth Parsing Maps")
self.parser.add_argument("--window_size", type=int, default=5, help="temporal window size")
self.parser.add_argument("--faceparsing_path", type=str, default='./checkpoint/faceparsing.pth', help="path of the face parsing model")
self.parser.add_argument("--raft_path", type=str, default='./checkpoint/raft-things.pth', help="path of the RAFT model")
self.parser.add_argument("--video_path", type=str, help="path of the target video")
self.parser.add_argument("--output_path", type=str, default='./output/', help="path of the output parsing maps")
def parse(self):
self.opt = self.parser.parse_args()
args = vars(self.opt)
print('Load options')
for name, value in sorted(args.items()):
print('%s: %s' % (str(name), str(value)))
return self.opt
# from RAFT
def warp(x, flo):
"""
warp an image/tensor (im2) back to im1, according to the optical flow
x: [B, C, H, W] (im2)
flo: [B, 2, H, W] flow
"""
B, C, H, W = x.size()
# mesh grid
xx = torch.arange(0, W).view(1,-1).repeat(H,1)
yy = torch.arange(0, H).view(-1,1).repeat(1,W)
xx = xx.view(1,1,H,W).repeat(B,1,1,1)
yy = yy.view(1,1,H,W).repeat(B,1,1,1)
grid = torch.cat((xx,yy),1).float()
#x = x.cuda()
grid = grid.cuda()
vgrid = grid + flo # B,2,H,W
# scale grid to [-1,1]
##2019 code
vgrid[:,0,:,:] = 2.0*vgrid[:,0,:,:].clone()/max(W-1,1)-1.0
vgrid[:,1,:,:] = 2.0*vgrid[:,1,:,:].clone()/max(H-1,1)-1.0
vgrid = vgrid.permute(0,2,3,1)
output = nn.functional.grid_sample(x, vgrid,align_corners=True)
mask = torch.autograd.Variable(torch.ones(x.size())).cuda()
mask = nn.functional.grid_sample(mask, vgrid,align_corners=True)
##2019 author
mask[mask<0.9999] = 0
mask[mask>0] = 1
##2019 code
# mask = torch.floor(torch.clamp(mask, 0 ,1))
return output*mask, mask
if __name__ == "__main__":
parser = Options()
args = parser.parse()
print('*'*98)
device = "cuda"
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5],std=[0.5,0.5,0.5]),
])
parser = argparse.ArgumentParser()
parser.add_argument('--model', help="restore checkpoint")
parser.add_argument('--small', action='store_true', help='use small model')
parser.add_argument('--mixed_precision', action='store_true', help='use mixed precision')
parser.add_argument('--alternate_corr', action='store_true', help='use efficent correlation implementation')
raft_model = torch.nn.DataParallel(RAFT(parser.parse_args(['--model', args.raft_path])))
raft_model.load_state_dict(torch.load(args.raft_path))
raft_model = raft_model.module
raft_model.to(device)
raft_model.eval()
parsingpredictor = BiSeNet(n_classes=19)
parsingpredictor.load_state_dict(torch.load(args.faceparsing_path, map_location=lambda storage, loc: storage))
parsingpredictor.to(device).eval()
down = Downsample(kernel=[1, 3, 3, 1], factor=2).to(device).eval()
print('Load models successfully!')
window = args.window_size
video_cap = cv2.VideoCapture(args.video_path)
num = int(video_cap.get(7))
Is = []
for i in range(num):
success, frame = video_cap.read()
if success == False:
break
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
with torch.no_grad():
Is += [transform(frame).unsqueeze(dim=0).cpu()]
video_cap.release()
# enlarge frames for more accurate parsing maps and optical flows
Is = F.upsample(torch.cat(Is, dim=0), scale_factor=2, mode='bilinear')
Is_ = torch.cat((Is[0:window], Is, Is[-window:]), dim=0)
print('Load video with %d frames successfully!'%(len(Is)))
Ps = []
for i in tqdm(range(len(Is))):
with torch.no_grad():
Ps += [parsingpredictor(2*Is[i:i+1].to(device))[0].detach().cpu()]
Ps = torch.cat(Ps, dim=0)
Ps_ = torch.cat((Ps[0:window], Ps, Ps[-window:]), dim=0)
print('Predict parsing maps successfully!')
# temporal weights of the (2*args.window_size+1) frames
wt = torch.exp(-(torch.arange(2*window+1).float()-window)**2/(2*((window+0.5)**2))).reshape(2*window+1,1,1,1).to(device)
parse = []
for ii in tqdm(range(len(Is))):
i = ii + window
image2 = Is_[i-window:i+window+1].to(device)
image1 = Is_[i].repeat(2*window+1,1,1,1).to(device)
padder = InputPadder(image1.shape)
image1, image2 = padder.pad(image1, image2)
with torch.no_grad():
flow_low, flow_up = raft_model((image1+1)*255.0/2, (image2+1)*255.0/2, iters=20, test_mode=True)
output, mask = warp(torch.cat((image2, Ps_[i-window:i+window+1].to(device)), dim=1), flow_up)
aligned_Is = output[:,0:3].detach()
aligned_Ps = output[:,3:].detach()
# the spatial weight
ws = torch.exp(-((aligned_Is-image1)**2).mean(dim=1, keepdims=True)/(2*(0.2**2))) * mask[:,0:1]
aligned_Ps[window] = Ps_[i].to(device)
# the weight between i and i shoud be 1.0
ws[window,:,:,:] = 1.0
weights = ws*wt
weights = weights / weights.sum(dim=(0), keepdims=True)
fused_Ps = (aligned_Ps * weights).sum(dim=0, keepdims=True)
parse += [down(fused_Ps).detach().cpu()]
parse = torch.cat(parse, dim=0)
basename = os.path.basename(args.video_path).split('.')[0]
np.save(os.path.join(args.output_path, basename+'_parsingmap.npy'), parse.numpy())
print('Done!') |