Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
from __future__ import annotations | |
import argparse | |
import pathlib | |
import torch | |
import gradio as gr | |
from vtoonify_model import Model | |
def parse_args() -> argparse.Namespace: | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--device", type=str, default="cpu") | |
parser.add_argument("--theme", type=str) | |
parser.add_argument("--share", action="store_true") | |
parser.add_argument("--port", type=int) | |
parser.add_argument("--disable-queue", dest="enable_queue", action="store_false") | |
return parser.parse_args() | |
DESCRIPTION = """ | |
<div align=center> | |
<h1 style="font-weight: 900; margin-bottom: 7px;"> | |
Portrait Style Transfer with <a href="https://github.com/williamyang1991/VToonify">VToonify</a> | |
</h1> | |
<p>For faster inference without waiting in queue, you may duplicate the space and use the GPU setting. | |
<br/> | |
<a href="https://huggingface.co/spaces/PKUWilliamYang/VToonify?duplicate=true"> | |
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> | |
<p/> | |
<video id="video" width=50% controls="" preload="none" poster="https://repository-images.githubusercontent.com/534480768/53715b0f-a2df-4daa-969c-0e74c102d339"> | |
<source id="mp4" src="https://user-images.githubusercontent.com/18130694/189483939-0fc4a358-fb34-43cc-811a-b22adb820d57.mp4 | |
" type="video/mp4"> | |
</videos> | |
</div> | |
""" | |
FOOTER = '<div align=center><img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.laobi.icu/badge?page_id=williamyang1991/VToonify" /></div>' | |
ARTICLE = r""" | |
If VToonify is helpful, please help to β the <a href='https://github.com/williamyang1991/VToonify' target='_blank'>Github Repo</a>. Thanks! | |
[![GitHub Stars](https://img.shields.io/github/stars/williamyang1991/VToonify?style=social)](https://github.com/williamyang1991/VToonify) | |
--- | |
π **Citation** | |
If our work is useful for your research, please consider citing: | |
```bibtex | |
@article{yang2022Vtoonify, | |
title={VToonify: Controllable High-Resolution Portrait Video Style Transfer}, | |
author={Yang, Shuai and Jiang, Liming and Liu, Ziwei and Loy, Chen Change}, | |
journal={ACM Transactions on Graphics (TOG)}, | |
volume={41}, | |
number={6}, | |
articleno={203}, | |
pages={1--15}, | |
year={2022}, | |
publisher={ACM New York, NY, USA}, | |
doi={10.1145/3550454.3555437}, | |
} | |
``` | |
π **License** | |
This project is licensed under <a rel="license" href="https://github.com/williamyang1991/VToonify/blob/main/LICENSE.md">S-Lab License 1.0</a>. | |
Redistribution and use for non-commercial purposes should follow this license. | |
π§ **Contact** | |
If you have any questions, please feel free to reach me out at <b>williamyang@pku.edu.cn</b>. | |
""" | |
def update_slider(choice: str) -> dict: | |
if type(choice) == str and choice.endswith("-d"): | |
return gr.Slider.update(maximum=1, minimum=0, value=0.5) | |
else: | |
return gr.Slider.update(maximum=0.5, minimum=0.5, value=0.5) | |
def set_example_image(example: list) -> dict: | |
return gr.Image.update(value=example[0]) | |
def set_example_video(example: list) -> dict: | |
return (gr.Video.update(value=example[0]),) | |
sample_video = [ | |
"./vtoonify/data/529_2.mp4", | |
"./vtoonify/data/7154235.mp4", | |
"./vtoonify/data/651.mp4", | |
"./vtoonify/data/908.mp4", | |
] | |
sample_vid = gr.Video(label="Video file") # for displaying the example | |
example_videos = gr.components.Dataset( | |
components=[sample_vid], | |
samples=[[path] for path in sample_video], | |
type="values", | |
label="Video Examples", | |
) | |
model = Model(device="cuda") | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Box(): | |
gr.Markdown( | |
"""## Step 1(Select Style) | |
- Select **Style Type**. | |
- Type with `-d` means it supports style degree adjustment. | |
- Type without `-d` usually has better toonification quality. | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("""Select Style Type""") | |
with gr.Row(): | |
style_type = gr.Radio( | |
label="Style Type", | |
choices=[ | |
"cartoon1", | |
"cartoon1-d", | |
"cartoon2-d", | |
"cartoon3-d", | |
"cartoon4", | |
"cartoon4-d", | |
"cartoon5-d", | |
"comic1-d", | |
"comic2-d", | |
"arcane1", | |
"arcane1-d", | |
"arcane2", | |
"arcane2-d", | |
"caricature1", | |
"caricature2", | |
"pixar", | |
"pixar-d", | |
"illustration1-d", | |
"illustration2-d", | |
"illustration3-d", | |
"illustration4-d", | |
"illustration5-d", | |
], | |
) | |
exstyle = gr.Variable() | |
with gr.Row(): | |
loadmodel_button = gr.Button("Load Model") | |
with gr.Row(): | |
load_info = gr.Textbox( | |
label="Process Information", | |
interactive=False, | |
value="No model loaded.", | |
) | |
with gr.Column(): | |
gr.Markdown( | |
"""Reference Styles | |
![example](https://raw.githubusercontent.com/williamyang1991/tmpfile/master/vtoonify/style.jpg)""" | |
) | |
with gr.Box(): | |
gr.Markdown( | |
"""## Step 2 (Preprocess Input Image / Video) | |
- Drop an image/video containing a near-frontal face to the **Input Image**/**Input Video**. | |
- Hit the **Rescale Image**/**Rescale First Frame** button. | |
- Rescale the input to make it best fit the model. | |
- The final image result will be based on this **Rescaled Face**. Use padding parameters to adjust the background space. | |
- **<font color=red>Solution to [Error: no face detected!]</font>**: VToonify uses dlib.get_frontal_face_detector but sometimes it fails to detect a face. You can try several times or use other images until a face is detected, then switch back to the original image. | |
- For video input, further hit the **Rescale Video** button. | |
- The final video result will be based on this **Rescaled Video**. To avoid overload, video is cut to at most **100/300** frames for CPU/GPU, respectively. | |
""" | |
) | |
with gr.Row(): | |
with gr.Box(): | |
with gr.Column(): | |
gr.Markdown( | |
"""Choose the padding parameters. | |
![example](https://raw.githubusercontent.com/williamyang1991/tmpfile/master/vtoonify/rescale.jpg)""" | |
) | |
with gr.Row(): | |
top = gr.Slider(128, 256, value=200, step=8, label="top") | |
with gr.Row(): | |
bottom = gr.Slider(128, 256, value=200, step=8, label="bottom") | |
with gr.Row(): | |
left = gr.Slider(128, 256, value=200, step=8, label="left") | |
with gr.Row(): | |
right = gr.Slider(128, 256, value=200, step=8, label="right") | |
with gr.Box(): | |
with gr.Column(): | |
gr.Markdown("""Input""") | |
with gr.Row(): | |
input_image = gr.Image(label="Input Image", type="filepath") | |
with gr.Row(): | |
preprocess_image_button = gr.Button("Rescale Image") | |
with gr.Row(): | |
input_video = gr.Video( | |
label="Input Video", | |
mirror_webcam=False, | |
type="filepath", | |
) | |
with gr.Row(): | |
preprocess_video0_button = gr.Button("Rescale First Frame") | |
preprocess_video1_button = gr.Button("Rescale Video") | |
with gr.Box(): | |
with gr.Column(): | |
gr.Markdown("""View""") | |
with gr.Row(): | |
input_info = gr.Textbox( | |
label="Process Information", | |
interactive=False, | |
value="n.a.", | |
) | |
with gr.Row(): | |
aligned_face = gr.Image( | |
label="Rescaled Face", type="numpy", interactive=False | |
) | |
instyle = gr.Variable() | |
with gr.Row(): | |
aligned_video = gr.Video( | |
label="Rescaled Video", type="mp4", interactive=False | |
) | |
with gr.Row(): | |
with gr.Column(): | |
paths = [ | |
"./vtoonify/data/pexels-andrea-piacquadio-733872.jpg", | |
"./vtoonify/data/i5R8hbZFDdc.jpg", | |
"./vtoonify/data/yRpe13BHdKw.jpg", | |
"./vtoonify/data/ILip77SbmOE.jpg", | |
"./vtoonify/data/077436.jpg", | |
"./vtoonify/data/081680.jpg", | |
] | |
example_images = gr.Dataset( | |
components=[input_image], | |
samples=[[path] for path in paths], | |
label="Image Examples", | |
) | |
with gr.Column(): | |
# example_videos = gr.Dataset(components=[input_video], samples=[['./vtoonify/data/529.mp4']], type='values') | |
# to render video example on mouse hover/click | |
example_videos.render() | |
# to load sample video into input_video upon clicking on it | |
def load_examples(video): | |
# print("****** inside load_example() ******") | |
# print("in_video is : ", video[0]) | |
return video[0] | |
example_videos.click(load_examples, example_videos, input_video) | |
with gr.Box(): | |
gr.Markdown("""## Step 3 (Generate Style Transferred Image/Video)""") | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown( | |
""" | |
- Adjust **Style Degree**. | |
- Hit **Toonify!** to toonify one frame. Hit **VToonify!** to toonify full video. | |
- Estimated time on 1600x1440 video of 300 frames: 1 hour (CPU); 2 mins (GPU) | |
""" | |
) | |
style_degree = gr.Slider( | |
0, 1, value=0.5, step=0.05, label="Style Degree" | |
) | |
with gr.Column(): | |
gr.Markdown( | |
"""![example](https://raw.githubusercontent.com/williamyang1991/tmpfile/master/vtoonify/degree.jpg) | |
""" | |
) | |
with gr.Row(): | |
output_info = gr.Textbox( | |
label="Process Information", interactive=False, value="n.a." | |
) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
result_face = gr.Image( | |
label="Result Image", type="numpy", interactive=False | |
) | |
with gr.Row(): | |
toonify_button = gr.Button("Toonify!") | |
with gr.Column(): | |
with gr.Row(): | |
result_video = gr.Video( | |
label="Result Video", type="mp4", interactive=False | |
) | |
with gr.Row(): | |
vtoonify_button = gr.Button("VToonify!") | |
gr.Markdown(ARTICLE) | |
gr.Markdown(FOOTER) | |
loadmodel_button.click( | |
fn=model.load_model, inputs=[style_type], outputs=[exstyle, load_info] | |
) | |
style_type.change(fn=update_slider, inputs=style_type, outputs=style_degree) | |
preprocess_image_button.click( | |
fn=model.detect_and_align_image, | |
inputs=[input_image, top, bottom, left, right], | |
outputs=[aligned_face, instyle, input_info], | |
) | |
preprocess_video0_button.click( | |
fn=model.detect_and_align_video, | |
inputs=[input_video, top, bottom, left, right], | |
outputs=[aligned_face, instyle, input_info], | |
) | |
preprocess_video1_button.click( | |
fn=model.detect_and_align_full_video, | |
inputs=[input_video, top, bottom, left, right], | |
outputs=[aligned_video, instyle, input_info], | |
) | |
toonify_button.click( | |
fn=model.image_toonify, | |
inputs=[aligned_face, instyle, exstyle, style_degree, style_type], | |
outputs=[result_face, output_info], | |
) | |
vtoonify_button.click( | |
fn=model.video_tooniy, | |
inputs=[aligned_video, instyle, exstyle, style_degree, style_type], | |
outputs=[result_video, output_info], | |
) | |
example_images.click( | |
fn=set_example_image, | |
inputs=example_images, | |
outputs=example_images.components, | |
) | |
# demo.launch( | |
# enable_queue=args.enable_queue, | |
# server_port=args.port, | |
# share=args.share, | |
# ) | |
demo.queue(concurrency_count=1, max_size=4) | |
demo.launch(server_port=8266) | |