Spaces:
Runtime error
Runtime error
import os | |
from typing import Dict, List | |
from dataclasses import dataclass | |
import datasets | |
import ast | |
import pandas as pd | |
import sentence_transformers | |
import streamlit as st | |
from findkit import feature_extractors, indexes, retrieval_pipeline | |
from toolz import partial | |
import config | |
def get_doc_cols(model_name): | |
model_name = model_name.replace("query-", "") | |
model_name = model_name.replace("document-", "") | |
return model_name.split("-")[0].split("_") | |
def merge_cols(df, cols): | |
df["document"] = df[cols[0]] | |
for col in cols: | |
df["document"] = df["document"] + " " + df[col] | |
return df | |
def get_retrieval_df( | |
data_path="lambdaofgod/pwc_repositories_with_dependencies", text_list_cols=None | |
): | |
raw_retrieval_df = ( | |
datasets.load_dataset(data_path)["train"] | |
.to_pandas() | |
.drop_duplicates(subset=["repo"]) | |
.reset_index(drop=True) | |
) | |
if text_list_cols: | |
return merge_text_list_cols(raw_retrieval_df, text_list_cols) | |
return raw_retrieval_df | |
def truncate_description(description, length=50): | |
return " ".join(description.split()[:length]) | |
def get_repos_with_descriptions(repos_df, repos): | |
return repos_df.loc[repos] | |
def merge_text_list_cols(retrieval_df, text_list_cols): | |
retrieval_df = retrieval_df.copy() | |
for col in text_list_cols: | |
retrieval_df[col] = retrieval_df[col].apply( | |
lambda t: " ".join(ast.literal_eval(t)) | |
) | |
return retrieval_df | |
class RetrievalPipelineWrapper: | |
pipeline: retrieval_pipeline.RetrievalPipeline | |
def build_from_encoders(cls, query_encoder, document_encoder, documents, metadata): | |
retrieval_pipe = retrieval_pipeline.RetrievalPipelineFactory( | |
feature_extractor=document_encoder, | |
query_feature_extractor=query_encoder, | |
index_factory=partial(indexes.NMSLIBIndex.build, distance="cosinesimil"), | |
) | |
pipeline = retrieval_pipe.build(documents, metadata=metadata) | |
return RetrievalPipelineWrapper(pipeline) | |
def search( | |
self, | |
query: str, | |
k: int, | |
description_length: int, | |
additional_shown_cols: List[str], | |
): | |
results = self.pipeline.find_similar(query, k) | |
# results['repo'] = results.index | |
results["link"] = "https://github.com/" + results["repo"] | |
for col in additional_shown_cols: | |
results[col] = results[col].apply( | |
lambda desc: truncate_description(desc, description_length) | |
) | |
shown_cols = ["repo", "tasks", "link", "distance"] | |
shown_cols = shown_cols + additional_shown_cols | |
return results.reset_index(drop=True)[shown_cols] | |
def setup_from_encoder_names(cls, query_encoder_path, document_encoder_path, documents, metadata, device | |
): | |
document_encoder = feature_extractors.SentenceEncoderFeatureExtractor( | |
sentence_transformers.SentenceTransformer( | |
document_encoder_path, device=device | |
) | |
) | |
query_encoder = feature_extractors.SentenceEncoderFeatureExtractor( | |
sentence_transformers.SentenceTransformer(query_encoder_path, device=device) | |
) | |
return cls.build_from_encoders( | |
query_encoder, document_encoder, documents, metadata | |
) | |