Spaces:
Runtime error
Runtime error
lambdaofgod
commited on
Commit
•
568499b
1
Parent(s):
1ed024e
app refactor and new models
Browse files- app_implementation.py +106 -0
- config.py +9 -2
- pages/1_Retrieval_App.py +3 -149
- search_utils.py +75 -0
app_implementation.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Dict, List
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
import datasets
|
6 |
+
import streamlit as st
|
7 |
+
import config
|
8 |
+
from findkit import retrieval_pipeline
|
9 |
+
from search_utils import (
|
10 |
+
get_repos_with_descriptions,
|
11 |
+
search_f,
|
12 |
+
merge_text_list_cols,
|
13 |
+
setup_retrieval_pipeline,
|
14 |
+
)
|
15 |
+
|
16 |
+
|
17 |
+
class RetrievalApp:
|
18 |
+
def __init__(self, data_path="lambdaofgod/pwc_repositories_with_dependencies"):
|
19 |
+
print("loading data")
|
20 |
+
|
21 |
+
raw_retrieval_df = (
|
22 |
+
datasets.load_dataset(data_path)["train"]
|
23 |
+
.to_pandas()
|
24 |
+
.drop_duplicates(subset=["repo"])
|
25 |
+
.reset_index(drop=True)
|
26 |
+
)
|
27 |
+
self.retrieval_df = merge_text_list_cols(
|
28 |
+
raw_retrieval_df, config.text_list_cols
|
29 |
+
)
|
30 |
+
|
31 |
+
model_name = st.sidebar.selectbox("model", config.model_names)
|
32 |
+
self.query_encoder_name = "lambdaofgod/query-" + model_name
|
33 |
+
self.document_encoder_name = "lambdaofgod/document-" + model_name
|
34 |
+
|
35 |
+
st.sidebar.text("using models")
|
36 |
+
st.sidebar.text("https://huggingface.co/" + self.query_encoder_name)
|
37 |
+
st.sidebar.text("https://huggingface.co/" + self.document_encoder_name)
|
38 |
+
|
39 |
+
@staticmethod
|
40 |
+
def show_retrieval_results(
|
41 |
+
retrieval_pipe: retrieval_pipeline.RetrievalPipeline,
|
42 |
+
query: str,
|
43 |
+
k: int,
|
44 |
+
all_queries: List[str],
|
45 |
+
description_length: int,
|
46 |
+
repos_by_query: Dict[str, pd.DataFrame],
|
47 |
+
doc_col: str,
|
48 |
+
):
|
49 |
+
print("started retrieval")
|
50 |
+
if query in all_queries:
|
51 |
+
with st.expander(
|
52 |
+
"query is in gold standard set queries. Toggle viewing gold standard results?"
|
53 |
+
):
|
54 |
+
st.write("gold standard results")
|
55 |
+
task_repos = repos_by_query.get_group(query)
|
56 |
+
st.table(get_repos_with_descriptions(retrieval_pipe.X_df, task_repos))
|
57 |
+
with st.spinner(text="fetching results"):
|
58 |
+
st.write(
|
59 |
+
search_f(retrieval_pipe, query, k, description_length, doc_col).to_html(
|
60 |
+
escape=False, index=False
|
61 |
+
),
|
62 |
+
unsafe_allow_html=True,
|
63 |
+
)
|
64 |
+
print("finished retrieval")
|
65 |
+
|
66 |
+
@staticmethod
|
67 |
+
def app(retrieval_pipeline, retrieval_df, doc_col):
|
68 |
+
|
69 |
+
retrieved_results = st.sidebar.number_input("number of results", value=10)
|
70 |
+
description_length = st.sidebar.number_input(
|
71 |
+
"number of used description words", value=10
|
72 |
+
)
|
73 |
+
|
74 |
+
tasks_deduped = (
|
75 |
+
retrieval_df["tasks"].explode().value_counts().reset_index()
|
76 |
+
) # drop_duplicates().sort_values().reset_index(drop=True)
|
77 |
+
tasks_deduped.columns = ["task", "documents per task"]
|
78 |
+
with st.sidebar.expander("View test set queries"):
|
79 |
+
st.table(tasks_deduped.explode("task"))
|
80 |
+
|
81 |
+
additional_shown_cols = st.sidebar.multiselect(
|
82 |
+
label="additional cols", options=config.text_cols, default=doc_col
|
83 |
+
)
|
84 |
+
|
85 |
+
repos_by_query = retrieval_df.explode("tasks").groupby("tasks")
|
86 |
+
query = st.text_input("input query", value="metric learning")
|
87 |
+
RetrievalApp.show_retrieval_results(
|
88 |
+
retrieval_pipeline,
|
89 |
+
query,
|
90 |
+
retrieved_results,
|
91 |
+
tasks_deduped["task"].to_list(),
|
92 |
+
description_length,
|
93 |
+
repos_by_query,
|
94 |
+
additional_shown_cols,
|
95 |
+
)
|
96 |
+
|
97 |
+
def main(self):
|
98 |
+
print("setting up retrieval_pipe")
|
99 |
+
doc_col = "dependencies"
|
100 |
+
retrieval_pipeline = setup_retrieval_pipeline(
|
101 |
+
self.query_encoder_name,
|
102 |
+
self.document_encoder_name,
|
103 |
+
self.retrieval_df[doc_col],
|
104 |
+
self.retrieval_df,
|
105 |
+
)
|
106 |
+
RetrievalApp.app(retrieval_pipeline, self.retrieval_df, doc_col)
|
config.py
CHANGED
@@ -1,4 +1,11 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
3 |
best_tasks_path="assets/best_tasks.csv"
|
4 |
worst_tasks_path="assets/worst_tasks.csv"
|
|
|
|
|
|
1 |
+
model_names = [
|
2 |
+
'dependencies-nbow-nbow-mnrl',
|
3 |
+
'readme-nbow-nbow-mnrl',
|
4 |
+
'titles-nbow-nbow-mnrl',
|
5 |
+
'titles#dependencies-nbow-nbow-mnrl',
|
6 |
+
'readme#dependencies-nbow-nbow-mnrl'
|
7 |
+
]
|
8 |
best_tasks_path="assets/best_tasks.csv"
|
9 |
worst_tasks_path="assets/worst_tasks.csv"
|
10 |
+
text_cols = ["dependencies", "readme", "titles"]
|
11 |
+
text_list_cols = ["titles"]
|
pages/1_Retrieval_App.py
CHANGED
@@ -1,151 +1,5 @@
|
|
1 |
-
import
|
2 |
-
from typing import Dict, List
|
3 |
|
4 |
-
import datasets
|
5 |
-
import pandas as pd
|
6 |
-
import sentence_transformers
|
7 |
-
import streamlit as st
|
8 |
-
from findkit import feature_extractors, indexes, retrieval_pipeline
|
9 |
-
from toolz import partial
|
10 |
-
import config
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
return " ".join(description.split()[:length])
|
15 |
-
|
16 |
-
|
17 |
-
def get_repos_with_descriptions(repos_df, repos):
|
18 |
-
return repos_df.loc[repos]
|
19 |
-
|
20 |
-
|
21 |
-
def search_f(
|
22 |
-
retrieval_pipe: retrieval_pipeline.RetrievalPipeline,
|
23 |
-
query: str,
|
24 |
-
k: int,
|
25 |
-
description_length: int,
|
26 |
-
doc_col: List[str],
|
27 |
-
):
|
28 |
-
results = retrieval_pipe.find_similar(query, k)
|
29 |
-
# results['repo'] = results.index
|
30 |
-
results["link"] = "https://github.com/" + results["repo"]
|
31 |
-
for col in doc_col:
|
32 |
-
results[col] = results[col].apply(
|
33 |
-
lambda desc: truncate_description(desc, description_length)
|
34 |
-
)
|
35 |
-
shown_cols = ["repo", "tasks", "link", "distance"]
|
36 |
-
shown_cols = shown_cols + doc_col
|
37 |
-
return results.reset_index(drop=True)[shown_cols]
|
38 |
-
|
39 |
-
|
40 |
-
def show_retrieval_results(
|
41 |
-
retrieval_pipe: retrieval_pipeline.RetrievalPipeline,
|
42 |
-
query: str,
|
43 |
-
k: int,
|
44 |
-
all_queries: List[str],
|
45 |
-
description_length: int,
|
46 |
-
repos_by_query: Dict[str, pd.DataFrame],
|
47 |
-
doc_col: str,
|
48 |
-
):
|
49 |
-
print("started retrieval")
|
50 |
-
if query in all_queries:
|
51 |
-
with st.expander(
|
52 |
-
"query is in gold standard set queries. Toggle viewing gold standard results?"
|
53 |
-
):
|
54 |
-
st.write("gold standard results")
|
55 |
-
task_repos = repos_by_query.get_group(query)
|
56 |
-
st.table(get_repos_with_descriptions(retrieval_pipe.X_df, task_repos))
|
57 |
-
with st.spinner(text="fetching results"):
|
58 |
-
st.write(
|
59 |
-
search_f(retrieval_pipe, query, k, description_length, doc_col).to_html(
|
60 |
-
escape=False, index=False
|
61 |
-
),
|
62 |
-
unsafe_allow_html=True,
|
63 |
-
)
|
64 |
-
print("finished retrieval")
|
65 |
-
|
66 |
-
|
67 |
-
def setup_pipeline(
|
68 |
-
extractor: feature_extractors.SentenceEncoderFeatureExtractor,
|
69 |
-
documents_df: pd.DataFrame,
|
70 |
-
text_col: str,
|
71 |
-
):
|
72 |
-
retrieval_pipeline.RetrievalPipelineFactory.build(
|
73 |
-
documents_df[text_col], metadata=documents_df
|
74 |
-
)
|
75 |
-
|
76 |
-
|
77 |
-
@st.cache(allow_output_mutation=True)
|
78 |
-
def setup_retrieval_pipeline(
|
79 |
-
query_encoder_path, document_encoder_path, documents, metadata
|
80 |
-
):
|
81 |
-
document_encoder = feature_extractors.SentenceEncoderFeatureExtractor(
|
82 |
-
sentence_transformers.SentenceTransformer(document_encoder_path, device="cpu")
|
83 |
-
)
|
84 |
-
query_encoder = feature_extractors.SentenceEncoderFeatureExtractor(
|
85 |
-
sentence_transformers.SentenceTransformer(query_encoder_path, device="cpu")
|
86 |
-
)
|
87 |
-
retrieval_pipe = retrieval_pipeline.RetrievalPipelineFactory(
|
88 |
-
feature_extractor=document_encoder,
|
89 |
-
query_feature_extractor=query_encoder,
|
90 |
-
index_factory=partial(indexes.NMSLIBIndex.build, distance="cosinesimil"),
|
91 |
-
)
|
92 |
-
return retrieval_pipe.build(documents, metadata=metadata)
|
93 |
-
|
94 |
-
|
95 |
-
def app(retrieval_pipeline, retrieval_df, doc_col):
|
96 |
-
|
97 |
-
retrieved_results = st.sidebar.number_input("number of results", value=10)
|
98 |
-
description_length = st.sidebar.number_input(
|
99 |
-
"number of used description words", value=10
|
100 |
-
)
|
101 |
-
|
102 |
-
tasks_deduped = (
|
103 |
-
retrieval_df["tasks"].explode().value_counts().reset_index()
|
104 |
-
) # drop_duplicates().sort_values().reset_index(drop=True)
|
105 |
-
tasks_deduped.columns = ["task", "documents per task"]
|
106 |
-
with st.sidebar.expander("View test set queries"):
|
107 |
-
st.table(tasks_deduped.explode("task"))
|
108 |
-
|
109 |
-
additional_shown_cols = st.sidebar.multiselect(
|
110 |
-
label="additional cols", options=[doc_col], default=doc_col
|
111 |
-
)
|
112 |
-
|
113 |
-
repos_by_query = retrieval_df.explode("tasks").groupby("tasks")
|
114 |
-
query = st.text_input("input query", value="metric learning")
|
115 |
-
show_retrieval_results(
|
116 |
-
retrieval_pipeline,
|
117 |
-
query,
|
118 |
-
retrieved_results,
|
119 |
-
tasks_deduped["task"].to_list(),
|
120 |
-
description_length,
|
121 |
-
repos_by_query,
|
122 |
-
additional_shown_cols,
|
123 |
-
)
|
124 |
-
|
125 |
-
|
126 |
-
def app_main(
|
127 |
-
query_encoder_path,
|
128 |
-
document_encoder_path,
|
129 |
-
data_path,
|
130 |
-
):
|
131 |
-
print("loading data")
|
132 |
-
|
133 |
-
retrieval_df = (
|
134 |
-
datasets.load_dataset(data_path)["train"]
|
135 |
-
.to_pandas()
|
136 |
-
.drop_duplicates(subset=["repo"])
|
137 |
-
.reset_index(drop=True)
|
138 |
-
)
|
139 |
-
print("setting up retrieval_pipe")
|
140 |
-
doc_col = "dependencies"
|
141 |
-
retrieval_pipeline = setup_retrieval_pipeline(
|
142 |
-
query_encoder_path, document_encoder_path, retrieval_df[doc_col], retrieval_df
|
143 |
-
)
|
144 |
-
app(retrieval_pipeline, retrieval_df, doc_col)
|
145 |
-
|
146 |
-
|
147 |
-
app_main(
|
148 |
-
query_encoder_path=config.query_encoder_model_name,
|
149 |
-
document_encoder_path=config.document_encoder_model_name,
|
150 |
-
data_path="lambdaofgod/pwc_repositories_with_dependencies",
|
151 |
-
)
|
|
|
1 |
+
from app_implementation import RetrievalApp
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
app = RetrievalApp()
|
5 |
+
app.main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
search_utils.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Dict, List
|
3 |
+
|
4 |
+
|
5 |
+
import ast
|
6 |
+
import pandas as pd
|
7 |
+
import sentence_transformers
|
8 |
+
import streamlit as st
|
9 |
+
from findkit import feature_extractors, indexes, retrieval_pipeline
|
10 |
+
from toolz import partial
|
11 |
+
import config
|
12 |
+
|
13 |
+
|
14 |
+
def truncate_description(description, length=50):
|
15 |
+
return " ".join(description.split()[:length])
|
16 |
+
|
17 |
+
|
18 |
+
def get_repos_with_descriptions(repos_df, repos):
|
19 |
+
return repos_df.loc[repos]
|
20 |
+
|
21 |
+
|
22 |
+
def search_f(
|
23 |
+
retrieval_pipe: retrieval_pipeline.RetrievalPipeline,
|
24 |
+
query: str,
|
25 |
+
k: int,
|
26 |
+
description_length: int,
|
27 |
+
doc_col: List[str],
|
28 |
+
):
|
29 |
+
results = retrieval_pipe.find_similar(query, k)
|
30 |
+
# results['repo'] = results.index
|
31 |
+
results["link"] = "https://github.com/" + results["repo"]
|
32 |
+
for col in doc_col:
|
33 |
+
results[col] = results[col].apply(
|
34 |
+
lambda desc: truncate_description(desc, description_length)
|
35 |
+
)
|
36 |
+
shown_cols = ["repo", "tasks", "link", "distance"]
|
37 |
+
shown_cols = shown_cols + doc_col
|
38 |
+
return results.reset_index(drop=True)[shown_cols]
|
39 |
+
|
40 |
+
|
41 |
+
def merge_text_list_cols(retrieval_df, text_list_cols):
|
42 |
+
retrieval_df = retrieval_df.copy()
|
43 |
+
for col in text_list_cols:
|
44 |
+
retrieval_df[col] = retrieval_df[col].apply(
|
45 |
+
lambda t: " ".join(ast.literal_eval(t))
|
46 |
+
)
|
47 |
+
return retrieval_df
|
48 |
+
|
49 |
+
|
50 |
+
def setup_pipeline(
|
51 |
+
extractor: feature_extractors.SentenceEncoderFeatureExtractor,
|
52 |
+
documents_df: pd.DataFrame,
|
53 |
+
text_col: str,
|
54 |
+
):
|
55 |
+
retrieval_pipeline.RetrievalPipelineFactory.build(
|
56 |
+
documents_df[text_col], metadata=documents_df
|
57 |
+
)
|
58 |
+
|
59 |
+
|
60 |
+
@st.cache(allow_output_mutation=True)
|
61 |
+
def setup_retrieval_pipeline(
|
62 |
+
query_encoder_path, document_encoder_path, documents, metadata
|
63 |
+
):
|
64 |
+
document_encoder = feature_extractors.SentenceEncoderFeatureExtractor(
|
65 |
+
sentence_transformers.SentenceTransformer(document_encoder_path, device="cpu")
|
66 |
+
)
|
67 |
+
query_encoder = feature_extractors.SentenceEncoderFeatureExtractor(
|
68 |
+
sentence_transformers.SentenceTransformer(query_encoder_path, device="cpu")
|
69 |
+
)
|
70 |
+
retrieval_pipe = retrieval_pipeline.RetrievalPipelineFactory(
|
71 |
+
feature_extractor=document_encoder,
|
72 |
+
query_feature_extractor=query_encoder,
|
73 |
+
index_factory=partial(indexes.NMSLIBIndex.build, distance="cosinesimil"),
|
74 |
+
)
|
75 |
+
return retrieval_pipe.build(documents, metadata=metadata)
|