Spaces:
Sleeping
Sleeping
File size: 5,642 Bytes
f63856c 54683ea 60189d4 f63856c 5c38735 09731af f63856c 5c38735 f63856c 9453e0d f63856c f8568c2 f63856c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
from transformers import pipeline
import os
import torch
description = """# <p style="text-align: center; color: white;"> 🎅🔨 <span style='color: #ff75b3;'>SantaFixer:</span> Bug Fixing</p>
<span style='color: white;'>This is a demo for <a href="https://huggingface.co/lambdasec/santafixer" style="color: #ff75b3;">SantaFixer</a>, a fine-tuned version of the SantaCoder model that is focussed on bug fixing. Just specify where you would like the model to fix the code with the <span style='color: #ff75b3;'><FILL-HERE></span> token.</span>"""
# token = os.environ["HUB_TOKEN"]
device=torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
FIM_PREFIX = "<fim-prefix>"
FIM_MIDDLE = "<fim-middle>"
FIM_SUFFIX = "<fim-suffix>"
FIM_PAD = "<fim-pad>"
EOD = "<|endoftext|>"
GENERATION_TITLE= "<p style='font-size: 16px; color: white;'>Generated code:</p>"
tokenizer_fim = AutoTokenizer.from_pretrained("lambdasec/santafixer", padding_side="left")
tokenizer_fim.add_special_tokens({
"additional_special_tokens": [EOD, FIM_PREFIX, FIM_MIDDLE, FIM_SUFFIX, FIM_PAD],
"pad_token": EOD,
})
tokenizer = AutoTokenizer.from_pretrained("bigcode/christmas-models")
model = AutoModelForCausalLM.from_pretrained("bigcode/christmas-models", trust_remote_code=True).to(device)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=device)
def post_processing(prompt, completion):
completion = "<span style='color: #ff75b3;'>" + completion + "</span>"
prompt = "<span style='color: #727cd6;'>" + prompt + "</span>"
code_html = f"<br><hr><br><pre style='font-size: 12px'><code>{prompt}{completion}</code></pre><br><hr>"
return GENERATION_TITLE + code_html
def post_processing_fim(prefix, middle, suffix):
prefix = "<span style='color: #727cd6;'>" + prefix + "</span>"
middle = "<span style='color: #ff75b3;'>" + middle + "</span>"
suffix = "<span style='color: #727cd6;'>" + suffix + "</span>"
code_html = f"<br><hr><br><pre style='font-size: 12px'><code>{prefix}{middle}{suffix}</code></pre><br><hr>"
return GENERATION_TITLE + code_html
def fim_generation(prompt, max_new_tokens, temperature):
prefix = prompt.split("<FILL-HERE>")[0]
suffix = prompt.split("<FILL-HERE>")[1]
[middle] = infill((prefix, suffix), max_new_tokens, temperature)
return post_processing_fim(prefix, middle, suffix)
def extract_fim_part(s: str):
# Find the index of
start = s.find(FIM_MIDDLE) + len(FIM_MIDDLE)
stop = s.find(EOD, start) or len(s)
return s[start:stop]
def infill(prefix_suffix_tuples, max_new_tokens, temperature):
if type(prefix_suffix_tuples) == tuple:
prefix_suffix_tuples = [prefix_suffix_tuples]
prompts = [f"{FIM_PREFIX}{prefix}{FIM_SUFFIX}{suffix}{FIM_MIDDLE}" for prefix, suffix in prefix_suffix_tuples]
# `return_token_type_ids=False` is essential, or we get nonsense output.
inputs = tokenizer_fim(prompts, return_tensors="pt", padding=True, return_token_type_ids=False).to(device)
with torch.no_grad():
outputs = model.generate(
**inputs,
do_sample=True,
temperature=temperature,
max_new_tokens=max_new_tokens,
pad_token_id=tokenizer.pad_token_id
)
# WARNING: cannot use skip_special_tokens, because it blows away the FIM special tokens.
return [
extract_fim_part(tokenizer_fim.decode(tensor, skip_special_tokens=False)) for tensor in outputs
]
def code_generation(prompt, max_new_tokens, temperature=0.2, seed=42):
#set_seed(seed)
if "<FILL-HERE>" in prompt:
return fim_generation(prompt, max_new_tokens, temperature=0.2)
else:
completion = pipe(prompt, do_sample=True, top_p=0.95, temperature=temperature, max_new_tokens=max_new_tokens)[0]['generated_text']
completion = completion[len(prompt):]
return post_processing(prompt, completion)
demo = gr.Blocks(
css=".gradio-container {background-color: #20233fff; color:white}"
)
with demo:
with gr.Row():
_, colum_2, _ = gr.Column(scale=1), gr.Column(scale=6), gr.Column(scale=1)
with colum_2:
gr.Markdown(value=description)
code = gr.Code(lines=5, language="python", label="Input code", value="def all_odd_elements(sequence):\n \"\"\"Returns every odd element of the sequence.\"\"\"")
with gr.Accordion("Advanced settings", open=False):
max_new_tokens= gr.Slider(
minimum=8,
maximum=1024,
step=1,
value=48,
label="Number of tokens to generate",
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.5,
step=0.1,
value=0.2,
label="Temperature",
)
seed = gr.Slider(
minimum=0,
maximum=1000,
step=1,
label="Random seed to use for the generation"
)
run = gr.Button()
output = gr.HTML(label="Generated code")
event = run.click(code_generation, [code, max_new_tokens, temperature, seed], output, api_name="predict")
# gr.HTML(label="Contact", value="<img src='https://huggingface.co/datasets/bigcode/admin/resolve/main/bigcode_contact.png' alt='contact' style='display: block; margin: auto; max-width: 800px;'>")
demo.launch() |