Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed | |
from transformers import pipeline | |
import os | |
import torch | |
description = """# <p style="text-align: center; color: white;"> ๐ <span style='color: #ff75b3;'>SantaFixer:</span> Code Generation </p> | |
<span style='color: white;'>This is a demo to generate code with <a href="https://huggingface.co/bigcode/santacoder" style="color: #ff75b3;">SantaCoder</a>, | |
a 1.1B parameter model for code generation in Python, Java & JavaScript. The model can also do infilling, just specify where you would like the model to complete code | |
with the <span style='color: #ff75b3;'><FILL-HERE></span> token.</span>""" | |
token = os.environ["HUB_TOKEN"] | |
device=torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') | |
FIM_PREFIX = "<fim-prefix>" | |
FIM_MIDDLE = "<fim-middle>" | |
FIM_SUFFIX = "<fim-suffix>" | |
FIM_PAD = "<fim-pad>" | |
EOD = "<|endoftext|>" | |
GENERATION_TITLE= "<p style='font-size: 16px; color: white;'>Generated code:</p>" | |
tokenizer_fim = AutoTokenizer.from_pretrained("lambdasec/santafixer", use_auth_token=token, padding_side="left") | |
tokenizer_fim.add_special_tokens({ | |
"additional_special_tokens": [EOD, FIM_PREFIX, FIM_MIDDLE, FIM_SUFFIX, FIM_PAD], | |
"pad_token": EOD, | |
}) | |
tokenizer = AutoTokenizer.from_pretrained("bigcode/christmas-models", use_auth_token=token) | |
model = AutoModelForCausalLM.from_pretrained("bigcode/christmas-models", trust_remote_code=True, use_auth_token=token).to(device) | |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=device) | |
def post_processing(prompt, completion): | |
completion = "<span style='color: #ff75b3;'>" + completion + "</span>" | |
prompt = "<span style='color: #727cd6;'>" + prompt + "</span>" | |
code_html = f"<br><hr><br><pre style='font-size: 12px'><code>{prompt}{completion}</code></pre><br><hr>" | |
return GENERATION_TITLE + code_html | |
def post_processing_fim(prefix, middle, suffix): | |
prefix = "<span style='color: #727cd6;'>" + prefix + "</span>" | |
middle = "<span style='color: #ff75b3;'>" + middle + "</span>" | |
suffix = "<span style='color: #727cd6;'>" + suffix + "</span>" | |
code_html = f"<br><hr><br><pre style='font-size: 12px'><code>{prefix}{middle}{suffix}</code></pre><br><hr>" | |
return GENERATION_TITLE + code_html | |
def fim_generation(prompt, max_new_tokens, temperature): | |
prefix = prompt.split("<FILL-HERE>")[0] | |
suffix = prompt.split("<FILL-HERE>")[1] | |
[middle] = infill((prefix, suffix), max_new_tokens, temperature) | |
return post_processing_fim(prefix, middle, suffix) | |
def extract_fim_part(s: str): | |
# Find the index of | |
start = s.find(FIM_MIDDLE) + len(FIM_MIDDLE) | |
stop = s.find(EOD, start) or len(s) | |
return s[start:stop] | |
def infill(prefix_suffix_tuples, max_new_tokens, temperature): | |
if type(prefix_suffix_tuples) == tuple: | |
prefix_suffix_tuples = [prefix_suffix_tuples] | |
prompts = [f"{FIM_PREFIX}{prefix}{FIM_SUFFIX}{suffix}{FIM_MIDDLE}" for prefix, suffix in prefix_suffix_tuples] | |
# `return_token_type_ids=False` is essential, or we get nonsense output. | |
inputs = tokenizer_fim(prompts, return_tensors="pt", padding=True, return_token_type_ids=False).to(device) | |
with torch.no_grad(): | |
outputs = model.generate( | |
**inputs, | |
do_sample=True, | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
pad_token_id=tokenizer.pad_token_id | |
) | |
# WARNING: cannot use skip_special_tokens, because it blows away the FIM special tokens. | |
return [ | |
extract_fim_part(tokenizer_fim.decode(tensor, skip_special_tokens=False)) for tensor in outputs | |
] | |
def code_generation(prompt, max_new_tokens, temperature=0.2, seed=42): | |
#set_seed(seed) | |
if "<FILL-HERE>" in prompt: | |
return fim_generation(prompt, max_new_tokens, temperature=0.2) | |
else: | |
completion = pipe(prompt, do_sample=True, top_p=0.95, temperature=temperature, max_new_tokens=max_new_tokens)[0]['generated_text'] | |
completion = completion[len(prompt):] | |
return post_processing(prompt, completion) | |
demo = gr.Blocks( | |
css=".gradio-container {background-color: #20233fff; color:white}" | |
) | |
with demo: | |
with gr.Row(): | |
_, colum_2, _ = gr.Column(scale=1), gr.Column(scale=6), gr.Column(scale=1) | |
with colum_2: | |
gr.Markdown(value=description) | |
code = gr.Code(lines=5, language="python", label="Input code", value="def all_odd_elements(sequence):\n \"\"\"Returns every odd element of the sequence.\"\"\"") | |
with gr.Accordion("Advanced settings", open=False): | |
max_new_tokens= gr.Slider( | |
minimum=8, | |
maximum=1024, | |
step=1, | |
value=48, | |
label="Number of tokens to generate", | |
) | |
temperature = gr.Slider( | |
minimum=0.1, | |
maximum=2.5, | |
step=0.1, | |
value=0.2, | |
label="Temperature", | |
) | |
seed = gr.Slider( | |
minimum=0, | |
maximum=1000, | |
step=1, | |
label="Random seed to use for the generation" | |
) | |
run = gr.Button() | |
output = gr.HTML(label="Generated code") | |
event = run.click(code_generation, [code, max_new_tokens, temperature, seed], output, api_name="predict") | |
gr.HTML(label="Contact", value="<img src='https://huggingface.co/datasets/bigcode/admin/resolve/main/bigcode_contact.png' alt='contact' style='display: block; margin: auto; max-width: 800px;'>") | |
demo.launch() |