Spaces:
Running
Running
chore: initialize the project
Browse files- .editorconfig +14 -0
- .github/workflows/githubhfsync.yaml +26 -0
- .gitignore +54 -0
- .pylintrc +579 -0
- .vscode/settings.json +6 -0
- Dockerfile +34 -0
- README.md +85 -0
- app.py +1 -0
- lightweight_embeddings/__init__.py +193 -0
- lightweight_embeddings/router.py +296 -0
- lightweight_embeddings/service.py +477 -0
- pyproject.toml +14 -0
- requirements.txt +9 -0
.editorconfig
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# top-most EditorConfig file
|
2 |
+
root = true
|
3 |
+
|
4 |
+
# Unix-style newlines with a newline ending every file
|
5 |
+
[*]
|
6 |
+
end_of_line = lf
|
7 |
+
insert_final_newline = true
|
8 |
+
|
9 |
+
# Matches multiple files with brace expansion notation
|
10 |
+
# Set default charset
|
11 |
+
[*]
|
12 |
+
charset = utf-8
|
13 |
+
indent_style = space
|
14 |
+
indent_size = 2
|
.github/workflows/githubhfsync.yaml
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: Sync Repository to HuggingFace Space
|
2 |
+
|
3 |
+
on:
|
4 |
+
push:
|
5 |
+
branches: [main]
|
6 |
+
workflow_dispatch: # Enable manual trigger
|
7 |
+
|
8 |
+
jobs:
|
9 |
+
sync-to-huggingface:
|
10 |
+
name: Sync code to HuggingFace Space
|
11 |
+
runs-on: ubuntu-latest
|
12 |
+
steps:
|
13 |
+
- name: Checkout repository
|
14 |
+
uses: actions/checkout@v3
|
15 |
+
with:
|
16 |
+
fetch-depth: 0 # Fetch all history for all branches and tags
|
17 |
+
lfs: true # Enable Git LFS support
|
18 |
+
|
19 |
+
- name: Push to HuggingFace Space
|
20 |
+
env:
|
21 |
+
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
22 |
+
run: |
|
23 |
+
if ! git push https://lamhieu:$HF_TOKEN@huggingface.co/spaces/lamhieu/lightweight-embeddings main; then
|
24 |
+
echo "Failed to sync with HuggingFace Space"
|
25 |
+
exit 1
|
26 |
+
fi
|
.gitignore
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Python bytecode files
|
2 |
+
# Ignore Python bytecode files
|
3 |
+
*.pyc
|
4 |
+
|
5 |
+
# Distribution packages
|
6 |
+
# Ignore distribution packages
|
7 |
+
/dist/*
|
8 |
+
|
9 |
+
# Test and coverage reports
|
10 |
+
# Ignore coverage and test result files
|
11 |
+
.coverage
|
12 |
+
.pytest_cache
|
13 |
+
.mypy_cache
|
14 |
+
|
15 |
+
# Log and temporary files
|
16 |
+
# Ignore log files and temporary files
|
17 |
+
*.log
|
18 |
+
*.tmp
|
19 |
+
tmp
|
20 |
+
|
21 |
+
# System files
|
22 |
+
# Ignore OS generated files
|
23 |
+
.DS_Store
|
24 |
+
|
25 |
+
# IDE and editor specific files
|
26 |
+
# Ignore project-specific files from various IDEs and editors
|
27 |
+
.idea/*
|
28 |
+
.vscode/*
|
29 |
+
.python-version
|
30 |
+
|
31 |
+
# Generated documentation
|
32 |
+
# Ignore generated documentation files
|
33 |
+
/docs/site/*
|
34 |
+
|
35 |
+
# Virtual environments
|
36 |
+
# Ignore virtual environment directories
|
37 |
+
.venv
|
38 |
+
|
39 |
+
# Configuration files
|
40 |
+
# Ignore configuration files
|
41 |
+
.poetry.toml
|
42 |
+
.env.local
|
43 |
+
.env.development
|
44 |
+
.env.test
|
45 |
+
.env.production
|
46 |
+
.env
|
47 |
+
|
48 |
+
# Temporary files and directories for operations
|
49 |
+
# Ignore Ops temporary files and directories
|
50 |
+
.aider*
|
51 |
+
|
52 |
+
# Credentials and secrets
|
53 |
+
# Ignore credentials and secrets files
|
54 |
+
.credentials
|
.pylintrc
ADDED
@@ -0,0 +1,579 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[MAIN]
|
2 |
+
|
3 |
+
# Specify a configuration file.
|
4 |
+
#rcfile=
|
5 |
+
|
6 |
+
# Python code to execute, usually for sys.path manipulation such as
|
7 |
+
# pygtk.require().
|
8 |
+
#init-hook=
|
9 |
+
|
10 |
+
# Files or directories to be skipped. They should be base names, not
|
11 |
+
# paths.
|
12 |
+
ignore=CVS
|
13 |
+
|
14 |
+
# Add files or directories matching the regex patterns to the ignore-list. The
|
15 |
+
# regex matches against paths and can be in Posix or Windows format.
|
16 |
+
ignore-paths=
|
17 |
+
|
18 |
+
# Files or directories matching the regex patterns are skipped. The regex
|
19 |
+
# matches against base names, not paths.
|
20 |
+
ignore-patterns=^\.#
|
21 |
+
|
22 |
+
# Pickle collected data for later comparisons.
|
23 |
+
persistent=yes
|
24 |
+
|
25 |
+
# List of plugins (as comma separated values of python modules names) to load,
|
26 |
+
# usually to register additional checkers.
|
27 |
+
load-plugins=
|
28 |
+
pylint.extensions.check_elif,
|
29 |
+
pylint.extensions.bad_builtin,
|
30 |
+
pylint.extensions.docparams,
|
31 |
+
pylint.extensions.for_any_all,
|
32 |
+
pylint.extensions.set_membership,
|
33 |
+
pylint.extensions.code_style,
|
34 |
+
pylint.extensions.overlapping_exceptions,
|
35 |
+
pylint.extensions.typing,
|
36 |
+
pylint.extensions.redefined_variable_type,
|
37 |
+
pylint.extensions.comparison_placement,
|
38 |
+
pylint.extensions.mccabe,
|
39 |
+
|
40 |
+
# Use multiple processes to speed up Pylint. Specifying 0 will auto-detect the
|
41 |
+
# number of processors available to use.
|
42 |
+
jobs=0
|
43 |
+
|
44 |
+
# When enabled, pylint would attempt to guess common misconfiguration and emit
|
45 |
+
# user-friendly hints instead of false-positive error messages.
|
46 |
+
suggestion-mode=yes
|
47 |
+
|
48 |
+
# Allow loading of arbitrary C extensions. Extensions are imported into the
|
49 |
+
# active Python interpreter and may run arbitrary code.
|
50 |
+
unsafe-load-any-extension=no
|
51 |
+
|
52 |
+
# A comma-separated list of package or module names from where C extensions may
|
53 |
+
# be loaded. Extensions are loading into the active Python interpreter and may
|
54 |
+
# run arbitrary code
|
55 |
+
extension-pkg-allow-list=
|
56 |
+
|
57 |
+
# Minimum supported python version
|
58 |
+
py-version = 3.7.2
|
59 |
+
|
60 |
+
# Control the amount of potential inferred values when inferring a single
|
61 |
+
# object. This can help the performance when dealing with large functions or
|
62 |
+
# complex, nested conditions.
|
63 |
+
limit-inference-results=100
|
64 |
+
|
65 |
+
# Specify a score threshold to be exceeded before program exits with error.
|
66 |
+
fail-under=10.0
|
67 |
+
|
68 |
+
# Return non-zero exit code if any of these messages/categories are detected,
|
69 |
+
# even if score is above --fail-under value. Syntax same as enable. Messages
|
70 |
+
# specified are enabled, while categories only check already-enabled messages.
|
71 |
+
fail-on=
|
72 |
+
|
73 |
+
|
74 |
+
[MESSAGES CONTROL]
|
75 |
+
|
76 |
+
# Only show warnings with the listed confidence levels. Leave empty to show
|
77 |
+
# all. Valid levels: HIGH, INFERENCE, INFERENCE_FAILURE, UNDEFINED
|
78 |
+
# confidence=
|
79 |
+
|
80 |
+
# Enable the message, report, category or checker with the given id(s). You can
|
81 |
+
# either give multiple identifier separated by comma (,) or put this option
|
82 |
+
# multiple time (only on the command line, not in the configuration file where
|
83 |
+
# it should appear only once). See also the "--disable" option for examples.
|
84 |
+
enable=
|
85 |
+
use-symbolic-message-instead,
|
86 |
+
useless-suppression,
|
87 |
+
|
88 |
+
# Disable the message, report, category or checker with the given id(s). You
|
89 |
+
# can either give multiple identifiers separated by comma (,) or put this
|
90 |
+
# option multiple times (only on the command line, not in the configuration
|
91 |
+
# file where it should appear only once).You can also use "--disable=all" to
|
92 |
+
# disable everything first and then re-enable specific checks. For example, if
|
93 |
+
# you want to run only the similarities checker, you can use "--disable=all
|
94 |
+
# --enable=similarities". If you want to run only the classes checker, but have
|
95 |
+
# no Warning level messages displayed, use"--disable=all --enable=classes
|
96 |
+
# --disable=W"
|
97 |
+
|
98 |
+
disable=
|
99 |
+
attribute-defined-outside-init,
|
100 |
+
invalid-name,
|
101 |
+
missing-docstring,
|
102 |
+
protected-access,
|
103 |
+
too-few-public-methods,
|
104 |
+
# handled by black
|
105 |
+
format,
|
106 |
+
# We anticipate #3512 where it will become optional
|
107 |
+
fixme,
|
108 |
+
cyclic-import,
|
109 |
+
import-error,
|
110 |
+
#
|
111 |
+
unnecessary-pass,
|
112 |
+
unrecognized-option,
|
113 |
+
cell-var-from-loop,
|
114 |
+
no-member,
|
115 |
+
wrong-import-order,
|
116 |
+
raise-missing-from,
|
117 |
+
consider-using-f-string
|
118 |
+
|
119 |
+
|
120 |
+
[REPORTS]
|
121 |
+
|
122 |
+
# Set the output format. Available formats are text, parseable, colorized, msvs
|
123 |
+
# (visual studio) and html. You can also give a reporter class, eg
|
124 |
+
# mypackage.mymodule.MyReporterClass.
|
125 |
+
output-format=text
|
126 |
+
|
127 |
+
# Tells whether to display a full report or only the messages
|
128 |
+
reports=no
|
129 |
+
|
130 |
+
# Python expression which should return a note less than 10 (10 is the highest
|
131 |
+
# note). You have access to the variables 'fatal', 'error', 'warning', 'refactor', 'convention'
|
132 |
+
# and 'info', which contain the number of messages in each category, as
|
133 |
+
# well as 'statement', which is the total number of statements analyzed. This
|
134 |
+
# score is used by the global evaluation report (RP0004).
|
135 |
+
evaluation=max(0, 0 if fatal else 10.0 - ((float(5 * error + warning + refactor + convention) / statement) * 10))
|
136 |
+
|
137 |
+
# Template used to display messages. This is a python new-style format string
|
138 |
+
# used to format the message information. See doc for all details
|
139 |
+
#msg-template=
|
140 |
+
|
141 |
+
# Activate the evaluation score.
|
142 |
+
score=yes
|
143 |
+
|
144 |
+
|
145 |
+
[LOGGING]
|
146 |
+
|
147 |
+
# Logging modules to check that the string format arguments are in logging
|
148 |
+
# function parameter format
|
149 |
+
logging-modules=logging
|
150 |
+
|
151 |
+
# The type of string formatting that logging methods do. `old` means using %
|
152 |
+
# formatting, `new` is for `{}` formatting.
|
153 |
+
logging-format-style=old
|
154 |
+
|
155 |
+
|
156 |
+
[MISCELLANEOUS]
|
157 |
+
|
158 |
+
# List of note tags to take in consideration, separated by a comma.
|
159 |
+
notes=FIXME,XXX,TODO
|
160 |
+
|
161 |
+
# Regular expression of note tags to take in consideration.
|
162 |
+
#notes-rgx=
|
163 |
+
|
164 |
+
|
165 |
+
[SIMILARITIES]
|
166 |
+
|
167 |
+
# Minimum lines number of a similarity.
|
168 |
+
min-similarity-lines=6
|
169 |
+
|
170 |
+
# Ignore comments when computing similarities.
|
171 |
+
ignore-comments=yes
|
172 |
+
|
173 |
+
# Ignore docstrings when computing similarities.
|
174 |
+
ignore-docstrings=yes
|
175 |
+
|
176 |
+
# Ignore imports when computing similarities.
|
177 |
+
ignore-imports=yes
|
178 |
+
|
179 |
+
# Signatures are removed from the similarity computation
|
180 |
+
ignore-signatures=yes
|
181 |
+
|
182 |
+
|
183 |
+
[VARIABLES]
|
184 |
+
|
185 |
+
# Tells whether we should check for unused import in __init__ files.
|
186 |
+
init-import=no
|
187 |
+
|
188 |
+
# A regular expression matching the name of dummy variables (i.e. expectedly
|
189 |
+
# not used).
|
190 |
+
dummy-variables-rgx=_$|dummy
|
191 |
+
|
192 |
+
# List of additional names supposed to be defined in builtins. Remember that
|
193 |
+
# you should avoid defining new builtins when possible.
|
194 |
+
additional-builtins=
|
195 |
+
|
196 |
+
# List of strings which can identify a callback function by name. A callback
|
197 |
+
# name must start or end with one of those strings.
|
198 |
+
callbacks=cb_,_cb
|
199 |
+
|
200 |
+
# Tells whether unused global variables should be treated as a violation.
|
201 |
+
allow-global-unused-variables=yes
|
202 |
+
|
203 |
+
# List of names allowed to shadow builtins
|
204 |
+
allowed-redefined-builtins=
|
205 |
+
|
206 |
+
# Argument names that match this expression will be ignored. Default to name
|
207 |
+
# with leading underscore.
|
208 |
+
ignored-argument-names=_.*
|
209 |
+
|
210 |
+
# List of qualified module names which can have objects that can redefine
|
211 |
+
# builtins.
|
212 |
+
redefining-builtins-modules=six.moves,past.builtins,future.builtins,builtins,io
|
213 |
+
|
214 |
+
|
215 |
+
[FORMAT]
|
216 |
+
|
217 |
+
# Maximum number of characters on a single line.
|
218 |
+
max-line-length=120
|
219 |
+
|
220 |
+
# Regexp for a line that is allowed to be longer than the limit.
|
221 |
+
ignore-long-lines=^\s*(# )?<?https?://\S+>?$
|
222 |
+
|
223 |
+
# Allow the body of an if to be on the same line as the test if there is no
|
224 |
+
# else.
|
225 |
+
single-line-if-stmt=no
|
226 |
+
|
227 |
+
# Allow the body of a class to be on the same line as the declaration if body
|
228 |
+
# contains single statement.
|
229 |
+
single-line-class-stmt=no
|
230 |
+
|
231 |
+
# Maximum number of lines in a module
|
232 |
+
max-module-lines=1000
|
233 |
+
|
234 |
+
# String used as indentation unit. This is usually " " (4 spaces) or "\t" (1
|
235 |
+
# tab).
|
236 |
+
indent-string=' '
|
237 |
+
|
238 |
+
# Number of spaces of indent required inside a hanging or continued line.
|
239 |
+
indent-after-paren=4
|
240 |
+
|
241 |
+
# Expected format of line ending, e.g. empty (any line ending), LF or CRLF.
|
242 |
+
expected-line-ending-format=
|
243 |
+
|
244 |
+
|
245 |
+
[BASIC]
|
246 |
+
|
247 |
+
# Good variable names which should always be accepted, separated by a comma
|
248 |
+
good-names=i,j,k,ex,Run,_
|
249 |
+
|
250 |
+
# Good variable names regexes, separated by a comma. If names match any regex,
|
251 |
+
# they will always be accepted
|
252 |
+
good-names-rgxs=
|
253 |
+
|
254 |
+
# Bad variable names which should always be refused, separated by a comma
|
255 |
+
bad-names=foo,bar,baz,toto,tutu,tata
|
256 |
+
|
257 |
+
# Bad variable names regexes, separated by a comma. If names match any regex,
|
258 |
+
# they will always be refused
|
259 |
+
bad-names-rgxs=
|
260 |
+
|
261 |
+
# Colon-delimited sets of names that determine each other's naming style when
|
262 |
+
# the name regexes allow several styles.
|
263 |
+
name-group=
|
264 |
+
|
265 |
+
# Include a hint for the correct naming format with invalid-name
|
266 |
+
include-naming-hint=no
|
267 |
+
|
268 |
+
# Naming style matching correct function names.
|
269 |
+
function-naming-style=snake_case
|
270 |
+
|
271 |
+
# Regular expression matching correct function names
|
272 |
+
function-rgx=[a-z_][a-z0-9_]{2,30}$
|
273 |
+
|
274 |
+
# Naming style matching correct variable names.
|
275 |
+
variable-naming-style=snake_case
|
276 |
+
|
277 |
+
# Regular expression matching correct variable names
|
278 |
+
variable-rgx=[a-z_][a-z0-9_]{2,30}$
|
279 |
+
|
280 |
+
# Naming style matching correct constant names.
|
281 |
+
const-naming-style=UPPER_CASE
|
282 |
+
|
283 |
+
# Regular expression matching correct constant names
|
284 |
+
const-rgx=(([A-Z_][A-Z0-9_]*)|(__.*__))$
|
285 |
+
|
286 |
+
# Naming style matching correct attribute names.
|
287 |
+
attr-naming-style=snake_case
|
288 |
+
|
289 |
+
# Regular expression matching correct attribute names
|
290 |
+
attr-rgx=[a-z_][a-z0-9_]{2,}$
|
291 |
+
|
292 |
+
# Naming style matching correct argument names.
|
293 |
+
argument-naming-style=snake_case
|
294 |
+
|
295 |
+
# Regular expression matching correct argument names
|
296 |
+
argument-rgx=[a-z_][a-z0-9_]{2,30}$
|
297 |
+
|
298 |
+
# Naming style matching correct class attribute names.
|
299 |
+
class-attribute-naming-style=any
|
300 |
+
|
301 |
+
# Regular expression matching correct class attribute names
|
302 |
+
class-attribute-rgx=([A-Za-z_][A-Za-z0-9_]{2,30}|(__.*__))$
|
303 |
+
|
304 |
+
# Naming style matching correct class constant names.
|
305 |
+
class-const-naming-style=UPPER_CASE
|
306 |
+
|
307 |
+
# Regular expression matching correct class constant names. Overrides class-
|
308 |
+
# const-naming-style.
|
309 |
+
#class-const-rgx=
|
310 |
+
|
311 |
+
# Naming style matching correct inline iteration names.
|
312 |
+
inlinevar-naming-style=any
|
313 |
+
|
314 |
+
# Regular expression matching correct inline iteration names
|
315 |
+
inlinevar-rgx=[A-Za-z_][A-Za-z0-9_]*$
|
316 |
+
|
317 |
+
# Naming style matching correct class names.
|
318 |
+
class-naming-style=PascalCase
|
319 |
+
|
320 |
+
# Regular expression matching correct class names
|
321 |
+
class-rgx=[A-Z_][a-zA-Z0-9]+$
|
322 |
+
|
323 |
+
|
324 |
+
# Naming style matching correct module names.
|
325 |
+
module-naming-style=snake_case
|
326 |
+
|
327 |
+
# Regular expression matching correct module names
|
328 |
+
module-rgx=(([a-z_][a-z0-9_]*)|([A-Z][a-zA-Z0-9]+))$
|
329 |
+
|
330 |
+
|
331 |
+
# Naming style matching correct method names.
|
332 |
+
method-naming-style=snake_case
|
333 |
+
|
334 |
+
# Regular expression matching correct method names
|
335 |
+
method-rgx=[a-z_][a-z0-9_]{2,}$
|
336 |
+
|
337 |
+
# Regular expression which can overwrite the naming style set by typevar-naming-style.
|
338 |
+
#typevar-rgx=
|
339 |
+
|
340 |
+
# Regular expression which should only match function or class names that do
|
341 |
+
# not require a docstring. Use ^(?!__init__$)_ to also check __init__.
|
342 |
+
no-docstring-rgx=__.*__
|
343 |
+
|
344 |
+
# Minimum line length for functions/classes that require docstrings, shorter
|
345 |
+
# ones are exempt.
|
346 |
+
docstring-min-length=-1
|
347 |
+
|
348 |
+
# List of decorators that define properties, such as abc.abstractproperty.
|
349 |
+
property-classes=abc.abstractproperty
|
350 |
+
|
351 |
+
|
352 |
+
[TYPECHECK]
|
353 |
+
|
354 |
+
# Regex pattern to define which classes are considered mixins if ignore-mixin-
|
355 |
+
# members is set to 'yes'
|
356 |
+
mixin-class-rgx=.*MixIn
|
357 |
+
|
358 |
+
# List of module names for which member attributes should not be checked
|
359 |
+
# (useful for modules/projects where namespaces are manipulated during runtime
|
360 |
+
# and thus existing member attributes cannot be deduced by static analysis). It
|
361 |
+
# supports qualified module names, as well as Unix pattern matching.
|
362 |
+
ignored-modules=
|
363 |
+
|
364 |
+
# List of class names for which member attributes should not be checked (useful
|
365 |
+
# for classes with dynamically set attributes). This supports the use of
|
366 |
+
# qualified names.
|
367 |
+
ignored-classes=SQLObject, optparse.Values, thread._local, _thread._local
|
368 |
+
|
369 |
+
# List of members which are set dynamically and missed by pylint inference
|
370 |
+
# system, and so shouldn't trigger E1101 when accessed. Python regular
|
371 |
+
# expressions are accepted.
|
372 |
+
generated-members=REQUEST,acl_users,aq_parent,argparse.Namespace
|
373 |
+
|
374 |
+
# List of decorators that create context managers from functions, such as
|
375 |
+
# contextlib.contextmanager.
|
376 |
+
contextmanager-decorators=contextlib.contextmanager
|
377 |
+
|
378 |
+
# Tells whether to warn about missing members when the owner of the attribute
|
379 |
+
# is inferred to be None.
|
380 |
+
ignore-none=yes
|
381 |
+
|
382 |
+
# This flag controls whether pylint should warn about no-member and similar
|
383 |
+
# checks whenever an opaque object is returned when inferring. The inference
|
384 |
+
# can return multiple potential results while evaluating a Python object, but
|
385 |
+
# some branches might not be evaluated, which results in partial inference. In
|
386 |
+
# that case, it might be useful to still emit no-member and other checks for
|
387 |
+
# the rest of the inferred objects.
|
388 |
+
ignore-on-opaque-inference=yes
|
389 |
+
|
390 |
+
# Show a hint with possible names when a member name was not found. The aspect
|
391 |
+
# of finding the hint is based on edit distance.
|
392 |
+
missing-member-hint=yes
|
393 |
+
|
394 |
+
# The minimum edit distance a name should have in order to be considered a
|
395 |
+
# similar match for a missing member name.
|
396 |
+
missing-member-hint-distance=1
|
397 |
+
|
398 |
+
# The total number of similar names that should be taken in consideration when
|
399 |
+
# showing a hint for a missing member.
|
400 |
+
missing-member-max-choices=1
|
401 |
+
|
402 |
+
[SPELLING]
|
403 |
+
|
404 |
+
# Spelling dictionary name. Available dictionaries: none. To make it working
|
405 |
+
# install python-enchant package.
|
406 |
+
spelling-dict=
|
407 |
+
|
408 |
+
# List of comma separated words that should not be checked.
|
409 |
+
spelling-ignore-words=
|
410 |
+
|
411 |
+
# List of comma separated words that should be considered directives if they
|
412 |
+
# appear and the beginning of a comment and should not be checked.
|
413 |
+
spelling-ignore-comment-directives=fmt: on,fmt: off,noqa:,noqa,nosec,isort:skip,mypy:,pragma:,# noinspection
|
414 |
+
|
415 |
+
# A path to a file that contains private dictionary; one word per line.
|
416 |
+
spelling-private-dict-file=.pyenchant_pylint_custom_dict.txt
|
417 |
+
|
418 |
+
# Tells whether to store unknown words to indicated private dictionary in
|
419 |
+
# --spelling-private-dict-file option instead of raising a message.
|
420 |
+
spelling-store-unknown-words=no
|
421 |
+
|
422 |
+
# Limits count of emitted suggestions for spelling mistakes.
|
423 |
+
max-spelling-suggestions=2
|
424 |
+
|
425 |
+
|
426 |
+
[DESIGN]
|
427 |
+
|
428 |
+
# Maximum number of arguments for function / method
|
429 |
+
max-args=10
|
430 |
+
|
431 |
+
# Maximum number of locals for function / method body
|
432 |
+
max-locals=25
|
433 |
+
|
434 |
+
# Maximum number of return / yield for function / method body
|
435 |
+
max-returns=11
|
436 |
+
|
437 |
+
# Maximum number of branch for function / method body
|
438 |
+
max-branches=27
|
439 |
+
|
440 |
+
# Maximum number of statements in function / method body
|
441 |
+
max-statements=100
|
442 |
+
|
443 |
+
# Maximum number of parents for a class (see R0901).
|
444 |
+
max-parents=7
|
445 |
+
|
446 |
+
# List of qualified class names to ignore when counting class parents (see R0901).
|
447 |
+
ignored-parents=
|
448 |
+
|
449 |
+
# Maximum number of attributes for a class (see R0902).
|
450 |
+
max-attributes=11
|
451 |
+
|
452 |
+
# Minimum number of public methods for a class (see R0903).
|
453 |
+
min-public-methods=2
|
454 |
+
|
455 |
+
# Maximum number of public methods for a class (see R0904).
|
456 |
+
max-public-methods=25
|
457 |
+
|
458 |
+
# Maximum number of boolean expressions in an if statement (see R0916).
|
459 |
+
max-bool-expr=5
|
460 |
+
|
461 |
+
# List of regular expressions of class ancestor names to
|
462 |
+
# ignore when counting public methods (see R0903).
|
463 |
+
exclude-too-few-public-methods=
|
464 |
+
|
465 |
+
max-complexity=10
|
466 |
+
|
467 |
+
[CLASSES]
|
468 |
+
|
469 |
+
# List of method names used to declare (i.e. assign) instance attributes.
|
470 |
+
defining-attr-methods=__init__,__new__,setUp,__post_init__
|
471 |
+
|
472 |
+
# List of valid names for the first argument in a class method.
|
473 |
+
valid-classmethod-first-arg=cls
|
474 |
+
|
475 |
+
# List of valid names for the first argument in a metaclass class method.
|
476 |
+
valid-metaclass-classmethod-first-arg=mcs
|
477 |
+
|
478 |
+
# List of member names, which should be excluded from the protected access
|
479 |
+
# warning.
|
480 |
+
exclude-protected=_asdict,_fields,_replace,_source,_make
|
481 |
+
|
482 |
+
# Warn about protected attribute access inside special methods
|
483 |
+
check-protected-access-in-special-methods=no
|
484 |
+
|
485 |
+
[IMPORTS]
|
486 |
+
|
487 |
+
# List of modules that can be imported at any level, not just the top level
|
488 |
+
# one.
|
489 |
+
allow-any-import-level=
|
490 |
+
|
491 |
+
# Allow wildcard imports from modules that define __all__.
|
492 |
+
allow-wildcard-with-all=no
|
493 |
+
|
494 |
+
# Analyse import fallback blocks. This can be used to support both Python 2 and
|
495 |
+
# 3 compatible code, which means that the block might have code that exists
|
496 |
+
# only in one or another interpreter, leading to false positives when analysed.
|
497 |
+
analyse-fallback-blocks=no
|
498 |
+
|
499 |
+
# Deprecated modules which should not be used, separated by a comma
|
500 |
+
deprecated-modules=regsub,TERMIOS,Bastion,rexec
|
501 |
+
|
502 |
+
# Create a graph of every (i.e. internal and external) dependencies in the
|
503 |
+
# given file (report RP0402 must not be disabled)
|
504 |
+
import-graph=
|
505 |
+
|
506 |
+
# Create a graph of external dependencies in the given file (report RP0402 must
|
507 |
+
# not be disabled)
|
508 |
+
ext-import-graph=
|
509 |
+
|
510 |
+
# Create a graph of internal dependencies in the given file (report RP0402 must
|
511 |
+
# not be disabled)
|
512 |
+
int-import-graph=
|
513 |
+
|
514 |
+
# Force import order to recognize a module as part of the standard
|
515 |
+
# compatibility libraries.
|
516 |
+
known-standard-library=
|
517 |
+
|
518 |
+
# Force import order to recognize a module as part of a third party library.
|
519 |
+
known-third-party=enchant
|
520 |
+
|
521 |
+
# Couples of modules and preferred modules, separated by a comma.
|
522 |
+
preferred-modules=
|
523 |
+
|
524 |
+
|
525 |
+
[EXCEPTIONS]
|
526 |
+
|
527 |
+
# Exceptions that will emit a warning when being caught. Defaults to
|
528 |
+
# "Exception"
|
529 |
+
overgeneral-exceptions=Exception
|
530 |
+
|
531 |
+
|
532 |
+
[TYPING]
|
533 |
+
|
534 |
+
# Set to ``no`` if the app / library does **NOT** need to support runtime
|
535 |
+
# introspection of type annotations. If you use type annotations
|
536 |
+
# **exclusively** for type checking of an application, you're probably fine.
|
537 |
+
# For libraries, evaluate if some users what to access the type hints at
|
538 |
+
# runtime first, e.g., through ``typing.get_type_hints``. Applies to Python
|
539 |
+
# versions 3.7 - 3.9
|
540 |
+
runtime-typing = no
|
541 |
+
|
542 |
+
|
543 |
+
[DEPRECATED_BUILTINS]
|
544 |
+
|
545 |
+
# List of builtins function names that should not be used, separated by a comma
|
546 |
+
bad-functions=map,input
|
547 |
+
|
548 |
+
|
549 |
+
[REFACTORING]
|
550 |
+
|
551 |
+
# Maximum number of nested blocks for function / method body
|
552 |
+
max-nested-blocks=5
|
553 |
+
|
554 |
+
# Complete name of functions that never returns. When checking for
|
555 |
+
# inconsistent-return-statements if a never returning function is called then
|
556 |
+
# it will be considered as an explicit return statement and no message will be
|
557 |
+
# printed.
|
558 |
+
never-returning-functions=sys.exit,argparse.parse_error
|
559 |
+
|
560 |
+
|
561 |
+
[STRING]
|
562 |
+
|
563 |
+
# This flag controls whether inconsistent-quotes generates a warning when the
|
564 |
+
# character used as a quote delimiter is used inconsistently within a module.
|
565 |
+
check-quote-consistency=no
|
566 |
+
|
567 |
+
# This flag controls whether the implicit-str-concat should generate a warning
|
568 |
+
# on implicit string concatenation in sequences defined over several lines.
|
569 |
+
check-str-concat-over-line-jumps=no
|
570 |
+
|
571 |
+
|
572 |
+
[CODE_STYLE]
|
573 |
+
|
574 |
+
# Max line length for which to sill emit suggestions. Used to prevent optional
|
575 |
+
# suggestions which would get split by a code formatter (e.g., black). Will
|
576 |
+
# default to the setting for ``max-line-length``.
|
577 |
+
#max-line-length-suggestions=
|
578 |
+
|
579 |
+
W0107:unnecessary-pass
|
.vscode/settings.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"python.languageServer": "Pylance",
|
3 |
+
"python.analysis.typeCheckingMode": "basic",
|
4 |
+
"python.analysis.diagnosticSeverityOverrides": {},
|
5 |
+
"python.analysis.typeshedPaths": [".venv/Lib/site-packages"]
|
6 |
+
}
|
Dockerfile
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use Python 3.10.9 as the base image for consistent runtime environment
|
2 |
+
FROM python:3.10.9
|
3 |
+
|
4 |
+
# Add metadata labels
|
5 |
+
LABEL maintainer="lamhieu.vk@gmail.com"
|
6 |
+
LABEL description="Lightweight embeddings service using FastAPI and Hugging Face Transformers"
|
7 |
+
LABEL version="1.0"
|
8 |
+
|
9 |
+
# Setup non-root user for security
|
10 |
+
RUN useradd -m -u 1000 user
|
11 |
+
USER user
|
12 |
+
ENV HOME=/home/user \
|
13 |
+
PATH=/home/user/.local/bin:$PATH
|
14 |
+
|
15 |
+
# Set working directory for all subsequent commands
|
16 |
+
WORKDIR $HOME/app
|
17 |
+
|
18 |
+
# Copy application files
|
19 |
+
# Copy requirements first to leverage Docker cache
|
20 |
+
COPY --chown=user requirements.txt .
|
21 |
+
COPY --chown=user . .
|
22 |
+
|
23 |
+
# Install Python dependencies
|
24 |
+
# --no-cache-dir reduces image size
|
25 |
+
# --upgrade ensures latest compatible versions
|
26 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
27 |
+
|
28 |
+
# Expose service port
|
29 |
+
EXPOSE 8000
|
30 |
+
|
31 |
+
# Launch FastAPI application using uvicorn server
|
32 |
+
# --host 0.0.0.0: Listen on all network interfaces
|
33 |
+
# --port 8000: Run on port 8000
|
34 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "8000"]
|
README.md
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Lightweight Embeddings
|
3 |
+
emoji: 🌍
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: green
|
6 |
+
sdk: docker
|
7 |
+
app_file: app.py
|
8 |
+
---
|
9 |
+
|
10 |
+
# 🌍 LightweightEmbeddings: Multilingual, Fast, and Lightweight
|
11 |
+
|
12 |
+
**LightweightEmbeddings** is a high-performance framework designed for generating embeddings from **text** or **image-text inputs** across multiple languages. Engineered for efficiency and adaptability, it offers a perfect balance between speed and accuracy, making it ideal for **real-time applications** and **resource-constrained environments**.
|
13 |
+
|
14 |
+
## ✨ Key Features
|
15 |
+
|
16 |
+
- **Multilingual Support**: Seamlessly process text in over 100+ languages for truly global applications.
|
17 |
+
- **Text and Image Embeddings**: Generate embeddings from text or image-text pairs using state-of-the-art models.
|
18 |
+
- **Optimized for Speed**: Built with lightweight transformer models and efficient backends to ensure rapid inference, even on low-resource systems.
|
19 |
+
- **Flexibility**: Supports multiple transformer models for diverse use cases:
|
20 |
+
- Text models: `multilingual-e5-small`, `paraphrase-multilingual-MiniLM-L12-v2`, `bge-m3`
|
21 |
+
- Image model: `google/siglip-base-patch16-256-multilingual`
|
22 |
+
- **Dockerized**: Deploy anywhere with ease using Docker, making it production-ready out of the box.
|
23 |
+
- **Interactive API**: Comes with a **Gradio-powered playground** and detailed REST API documentation.
|
24 |
+
|
25 |
+
## 🚀 Use Cases
|
26 |
+
|
27 |
+
- **Search and Ranking**: Generate embeddings for advanced similarity-based ranking in search engines.
|
28 |
+
- **Recommendation Systems**: Use embeddings for personalized recommendations based on user input or preferences.
|
29 |
+
- **Multimodal Applications**: Combine text and image embeddings to power tasks like product catalog indexing, content moderation, or multimodal retrieval.
|
30 |
+
- **Language Understanding**: Enable semantic text analysis, summarization, or classification in multiple languages.
|
31 |
+
|
32 |
+
## 🛠️ Getting Started
|
33 |
+
|
34 |
+
### 1. Clone the Repository
|
35 |
+
```bash
|
36 |
+
git clone https://github.com/lh0x00/lightweight-embeddings.git
|
37 |
+
cd lightweight-embeddings
|
38 |
+
```
|
39 |
+
|
40 |
+
### 2. Build and Run with Docker
|
41 |
+
Make sure Docker is installed and running on your machine.
|
42 |
+
```bash
|
43 |
+
docker build -t lightweight-embeddings .
|
44 |
+
docker run -p 8000:8000 lightweight-embeddings
|
45 |
+
```
|
46 |
+
|
47 |
+
The API will now be accessible at `http://localhost:8000`.
|
48 |
+
|
49 |
+
## 📖 API Overview
|
50 |
+
|
51 |
+
### Endpoints
|
52 |
+
- **`/v1/embeddings`**: Generate text or image embeddings using the model of your choice.
|
53 |
+
- **`/v1/rank`**: Rank candidate inputs based on similarity to a query.
|
54 |
+
|
55 |
+
### Interactive Docs
|
56 |
+
- Visit the [Swagger UI](http://localhost:8000/docs) for detailed, interactive documentation.
|
57 |
+
- Explore additional resources with [ReDoc](http://localhost:8000/redoc).
|
58 |
+
|
59 |
+
## 🔬 Playground
|
60 |
+
|
61 |
+
### Embeddings Playground
|
62 |
+
- Test text and image embedding generation in the browser with a user-friendly **Gradio interface**.
|
63 |
+
- Simply visit `http://localhost:8000` after starting the server to access the playground.
|
64 |
+
|
65 |
+
## 🌐 Resources
|
66 |
+
|
67 |
+
- **Documentation**: [Explore full documentation](https://lamhieu-lightweight-embeddings.hf.space/docs)
|
68 |
+
- **Hugging Face Space**: [Try the live demo](https://huggingface.co/spaces/lamhieu/lightweight-embeddings)
|
69 |
+
- **GitHub Repository**: [View source code](https://github.com/lh0x00/lightweight-embeddings)
|
70 |
+
|
71 |
+
## 💡 Why LightweightEmbeddings?
|
72 |
+
|
73 |
+
1. **Performance-Oriented**: Delivers rapid results without compromising on quality, ideal for real-world deployment.
|
74 |
+
2. **Highly Adaptable**: Works in diverse environments, from cloud clusters to local devices.
|
75 |
+
3. **Developer-Friendly**: Intuitive API design with robust documentation and an integrated playground for experimentation.
|
76 |
+
|
77 |
+
## 👥 Contributors
|
78 |
+
|
79 |
+
- **lamhieu** – Creator and Maintainer ([GitHub](https://github.com/lh0x00))
|
80 |
+
|
81 |
+
Contributions are welcome! Check out the [contribution guidelines](https://github.com/lh0x00/lightweight-embeddings/blob/main/CONTRIBUTING.md).
|
82 |
+
|
83 |
+
## 📜 License
|
84 |
+
|
85 |
+
This project is licensed under the **MIT License**. See the [LICENSE](https://github.com/lh0x00/lightweight-embeddings/blob/main/LICENSE) file for details.
|
app.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from lightweight_embeddings import app
|
lightweight_embeddings/__init__.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# filename: __init__.py
|
2 |
+
|
3 |
+
"""
|
4 |
+
LightweightEmbeddings - FastAPI Application Entry Point
|
5 |
+
|
6 |
+
This application provides text and image embeddings using multiple text models and one image model.
|
7 |
+
|
8 |
+
Supported text model IDs:
|
9 |
+
- "multilingual-e5-small"
|
10 |
+
- "paraphrase-multilingual-MiniLM-L12-v2"
|
11 |
+
- "bge-m3"
|
12 |
+
|
13 |
+
Supported image model ID:
|
14 |
+
- "google/siglip-base-patch16-256-multilingual"
|
15 |
+
"""
|
16 |
+
|
17 |
+
from fastapi import FastAPI
|
18 |
+
from fastapi.middleware.cors import CORSMiddleware
|
19 |
+
import gradio as gr
|
20 |
+
import requests
|
21 |
+
import json
|
22 |
+
from gradio.routes import mount_gradio_app
|
23 |
+
|
24 |
+
# Application metadata
|
25 |
+
__version__ = "1.0.0"
|
26 |
+
__author__ = "lamhieu"
|
27 |
+
__description__ = "Fast, lightweight, multilingual embeddings solution."
|
28 |
+
|
29 |
+
# Set your embeddings API URL here (change host/port if needed)
|
30 |
+
EMBEDDINGS_API_URL = "http://localhost:8000/v1/embeddings"
|
31 |
+
|
32 |
+
# Initialize FastAPI application
|
33 |
+
app = FastAPI(
|
34 |
+
title="Lightweight Embeddings API",
|
35 |
+
description=__description__,
|
36 |
+
version=__version__,
|
37 |
+
docs_url="/docs",
|
38 |
+
redoc_url="/redoc",
|
39 |
+
)
|
40 |
+
|
41 |
+
# Configure CORS
|
42 |
+
app.add_middleware(
|
43 |
+
CORSMiddleware,
|
44 |
+
allow_origins=["*"], # Adjust if needed for specific domains
|
45 |
+
allow_credentials=True,
|
46 |
+
allow_methods=["*"],
|
47 |
+
allow_headers=["*"],
|
48 |
+
)
|
49 |
+
|
50 |
+
# Include your existing router (which provides /v1/embeddings, /v1/rank, etc.)
|
51 |
+
from .router import router
|
52 |
+
|
53 |
+
app.include_router(router, prefix="/v1")
|
54 |
+
|
55 |
+
|
56 |
+
def call_embeddings_api(user_input: str, selected_model: str) -> str:
|
57 |
+
"""
|
58 |
+
Send a request to the /v1/embeddings endpoint with the given model and input.
|
59 |
+
Return a pretty-printed JSON response or an error message.
|
60 |
+
"""
|
61 |
+
payload = {
|
62 |
+
"model": selected_model,
|
63 |
+
"input": user_input,
|
64 |
+
}
|
65 |
+
headers = {"Content-Type": "application/json"}
|
66 |
+
|
67 |
+
try:
|
68 |
+
response = requests.post(
|
69 |
+
EMBEDDINGS_API_URL, json=payload, headers=headers, timeout=20
|
70 |
+
)
|
71 |
+
except requests.exceptions.RequestException as e:
|
72 |
+
return f"❌ Network Error: {str(e)}"
|
73 |
+
|
74 |
+
if response.status_code != 200:
|
75 |
+
# Provide detailed error message
|
76 |
+
return f"❌ API Error {response.status_code}: {response.text}"
|
77 |
+
|
78 |
+
try:
|
79 |
+
data = response.json()
|
80 |
+
return json.dumps(data, indent=2)
|
81 |
+
except ValueError:
|
82 |
+
return "❌ Failed to parse JSON from API response."
|
83 |
+
|
84 |
+
|
85 |
+
def create_main_interface():
|
86 |
+
"""
|
87 |
+
Creates a Gradio Blocks interface showing project info and an embeddings playground.
|
88 |
+
"""
|
89 |
+
# Metadata to be displayed
|
90 |
+
root_data = {
|
91 |
+
"project": "Lightweight Embeddings Service",
|
92 |
+
"version": "1.0.0",
|
93 |
+
"description": (
|
94 |
+
"Fast and efficient multilingual text and image embeddings service "
|
95 |
+
"powered by sentence-transformers, supporting 100+ languages and multi-modal inputs"
|
96 |
+
),
|
97 |
+
"docs": "https://lamhieu-lightweight-embeddings.hf.space/docs",
|
98 |
+
"github": "https://github.com/lh0x00/lightweight-embeddings",
|
99 |
+
"spaces": "https://huggingface.co/spaces/lamhieu/lightweight-embeddings",
|
100 |
+
}
|
101 |
+
|
102 |
+
# Available model options for the dropdown
|
103 |
+
model_options = [
|
104 |
+
"multilingual-e5-small",
|
105 |
+
"paraphrase-multilingual-MiniLM-L12-v2",
|
106 |
+
"bge-m3",
|
107 |
+
"google/siglip-base-patch16-256-multilingual",
|
108 |
+
]
|
109 |
+
|
110 |
+
with gr.Blocks(title="Lightweight Embeddings", theme="default") as demo:
|
111 |
+
# Project Info
|
112 |
+
gr.Markdown(
|
113 |
+
"""
|
114 |
+
# 🎉 **Lightweight Embeddings Service** 🎉
|
115 |
+
|
116 |
+
Welcome to the **Lightweight Embeddings** API, a blazing-fast and flexible service
|
117 |
+
supporting **text** and **image** embeddings. Below you'll find key project details:
|
118 |
+
"""
|
119 |
+
)
|
120 |
+
gr.Markdown(
|
121 |
+
f"""
|
122 |
+
**Project**: {root_data["project"]} 🚀
|
123 |
+
**Version**: {root_data["version"]}
|
124 |
+
**Description**: {root_data["description"]}
|
125 |
+
|
126 |
+
**Docs**: [Click here]({root_data["docs"]}) 😎
|
127 |
+
**GitHub**: [Check it out]({root_data["github"]}) 🐙
|
128 |
+
**Spaces**: [Explore]({root_data["spaces"]}) 🤗
|
129 |
+
"""
|
130 |
+
)
|
131 |
+
gr.Markdown(
|
132 |
+
"""
|
133 |
+
---
|
134 |
+
### 💡 How to Use
|
135 |
+
- Visit **/docs** or **/redoc** for interactive API documentation.
|
136 |
+
- Check out **/v1/embeddings** and **/v1/rank** endpoints for direct usage.
|
137 |
+
- Or try the simple playground below! Enjoy exploring a multilingual, multi-modal world! 🌏🌐
|
138 |
+
"""
|
139 |
+
)
|
140 |
+
|
141 |
+
# Embeddings Playground
|
142 |
+
with gr.Accordion("🔬 Try the Embeddings Playground", open=True):
|
143 |
+
gr.Markdown(
|
144 |
+
"Enter your **text** or an **image URL**, pick a model, "
|
145 |
+
"then click **Generate** to get embeddings from the `/v1/embeddings` API."
|
146 |
+
)
|
147 |
+
input_text = gr.Textbox(
|
148 |
+
label="Input Text or Image URL",
|
149 |
+
placeholder="Type some text or paste an image URL...",
|
150 |
+
lines=3,
|
151 |
+
)
|
152 |
+
model_dropdown = gr.Dropdown(
|
153 |
+
choices=model_options,
|
154 |
+
value=model_options[0],
|
155 |
+
label="Select Model",
|
156 |
+
)
|
157 |
+
generate_btn = gr.Button("Generate Embeddings")
|
158 |
+
output_json = gr.Textbox(
|
159 |
+
label="Embeddings API Response",
|
160 |
+
lines=15,
|
161 |
+
interactive=False,
|
162 |
+
)
|
163 |
+
|
164 |
+
# Link the button to the inference function
|
165 |
+
generate_btn.click(
|
166 |
+
fn=call_embeddings_api,
|
167 |
+
inputs=[input_text, model_dropdown],
|
168 |
+
outputs=output_json,
|
169 |
+
)
|
170 |
+
|
171 |
+
return demo
|
172 |
+
|
173 |
+
|
174 |
+
# Create and mount the Gradio Blocks at the root path
|
175 |
+
main_interface = create_main_interface()
|
176 |
+
mount_gradio_app(app, main_interface, path="/")
|
177 |
+
|
178 |
+
|
179 |
+
# Startup and shutdown events
|
180 |
+
@app.on_event("startup")
|
181 |
+
async def startup_event():
|
182 |
+
"""
|
183 |
+
Initialize resources (like model loading) when the application starts.
|
184 |
+
"""
|
185 |
+
pass
|
186 |
+
|
187 |
+
|
188 |
+
@app.on_event("shutdown")
|
189 |
+
async def shutdown_event():
|
190 |
+
"""
|
191 |
+
Perform cleanup before the application shuts down.
|
192 |
+
"""
|
193 |
+
pass
|
lightweight_embeddings/router.py
ADDED
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# filename: router.py
|
2 |
+
|
3 |
+
"""
|
4 |
+
FastAPI Router for Embeddings Service
|
5 |
+
|
6 |
+
This file exposes the EmbeddingsService functionality via a RESTful API
|
7 |
+
to generate embeddings and rank candidates.
|
8 |
+
|
9 |
+
Supported Text Model IDs:
|
10 |
+
- "multilingual-e5-small"
|
11 |
+
- "paraphrase-multilingual-MiniLM-L12-v2"
|
12 |
+
- "bge-m3"
|
13 |
+
|
14 |
+
Supported Image Model ID:
|
15 |
+
- "google/siglip-base-patch16-256-multilingual"
|
16 |
+
"""
|
17 |
+
|
18 |
+
from __future__ import annotations
|
19 |
+
|
20 |
+
import logging
|
21 |
+
from typing import List, Union
|
22 |
+
from enum import Enum
|
23 |
+
|
24 |
+
from fastapi import APIRouter, HTTPException
|
25 |
+
from pydantic import BaseModel, Field
|
26 |
+
|
27 |
+
from .service import ModelConfig, TextModelType, EmbeddingsService
|
28 |
+
|
29 |
+
logger = logging.getLogger(__name__)
|
30 |
+
|
31 |
+
# Initialize FastAPI router
|
32 |
+
router = APIRouter(
|
33 |
+
tags=["v1"],
|
34 |
+
responses={404: {"description": "Not found"}},
|
35 |
+
)
|
36 |
+
|
37 |
+
|
38 |
+
class ModelType(str, Enum):
|
39 |
+
"""
|
40 |
+
High-level distinction for text vs. image models.
|
41 |
+
"""
|
42 |
+
|
43 |
+
TEXT = "text"
|
44 |
+
IMAGE = "image"
|
45 |
+
|
46 |
+
|
47 |
+
def detect_model_type(model_id: str) -> ModelType:
|
48 |
+
"""
|
49 |
+
Detect whether the provided model ID is for text or image.
|
50 |
+
|
51 |
+
Supported text model IDs:
|
52 |
+
- "multilingual-e5-small"
|
53 |
+
- "paraphrase-multilingual-MiniLM-L12-v2"
|
54 |
+
- "bge-m3"
|
55 |
+
|
56 |
+
Supported image model ID:
|
57 |
+
- "google/siglip-base-patch16-256-multilingual"
|
58 |
+
(or any model containing "siglip" in its identifier).
|
59 |
+
|
60 |
+
Args:
|
61 |
+
model_id: String identifier of the model.
|
62 |
+
|
63 |
+
Returns:
|
64 |
+
ModelType.TEXT if it matches one of the recognized text model IDs,
|
65 |
+
ModelType.IMAGE if it matches (or contains "siglip").
|
66 |
+
|
67 |
+
Raises:
|
68 |
+
ValueError: If the model_id is not recognized as either text or image.
|
69 |
+
"""
|
70 |
+
# Gather all known text model IDs (from TextModelType enum)
|
71 |
+
text_model_ids = {m.value for m in TextModelType}
|
72 |
+
|
73 |
+
# Simple check: if it's in text_model_ids, it's text;
|
74 |
+
# if 'siglip' is in the model ID, it's recognized as an image model.
|
75 |
+
if model_id in text_model_ids:
|
76 |
+
return ModelType.TEXT
|
77 |
+
elif "siglip" in model_id.lower():
|
78 |
+
return ModelType.IMAGE
|
79 |
+
|
80 |
+
error_msg = (
|
81 |
+
f"Unsupported model ID: '{model_id}'.\n"
|
82 |
+
"Valid text model IDs are: "
|
83 |
+
"'multilingual-e5-small', 'paraphrase-multilingual-MiniLM-L12-v2', 'bge-m3'.\n"
|
84 |
+
"Valid image model ID contains 'siglip', for example: 'google/siglip-base-patch16-256-multilingual'."
|
85 |
+
)
|
86 |
+
raise ValueError(error_msg)
|
87 |
+
|
88 |
+
|
89 |
+
# Pydantic Models for request/response
|
90 |
+
class EmbeddingRequest(BaseModel):
|
91 |
+
"""
|
92 |
+
Request body for embedding creation.
|
93 |
+
|
94 |
+
Model IDs (text):
|
95 |
+
- "multilingual-e5-small"
|
96 |
+
- "paraphrase-multilingual-MiniLM-L12-v2"
|
97 |
+
- "bge-m3"
|
98 |
+
|
99 |
+
Model ID (image):
|
100 |
+
- "google/siglip-base-patch16-256-multilingual"
|
101 |
+
"""
|
102 |
+
|
103 |
+
model: str = Field(
|
104 |
+
default=TextModelType.MULTILINGUAL_E5_SMALL.value,
|
105 |
+
description=(
|
106 |
+
"Model ID to use. Possible text models include: 'multilingual-e5-small', "
|
107 |
+
"'paraphrase-multilingual-MiniLM-L12-v2', 'bge-m3'. "
|
108 |
+
"For images, you can use: 'google/siglip-base-patch16-256-multilingual' "
|
109 |
+
"or any ID containing 'siglip'."
|
110 |
+
),
|
111 |
+
)
|
112 |
+
input: Union[str, List[str]] = Field(
|
113 |
+
...,
|
114 |
+
description=(
|
115 |
+
"Input text(s) or image path(s)/URL(s). "
|
116 |
+
"Accepts a single string or a list of strings."
|
117 |
+
),
|
118 |
+
)
|
119 |
+
|
120 |
+
|
121 |
+
class RankRequest(BaseModel):
|
122 |
+
"""
|
123 |
+
Request body for ranking candidates against queries.
|
124 |
+
|
125 |
+
Model IDs (text):
|
126 |
+
- "multilingual-e5-small"
|
127 |
+
- "paraphrase-multilingual-MiniLM-L12-v2"
|
128 |
+
- "bge-m3"
|
129 |
+
|
130 |
+
Model ID (image):
|
131 |
+
- "google/siglip-base-patch16-256-multilingual"
|
132 |
+
"""
|
133 |
+
|
134 |
+
model: str = Field(
|
135 |
+
default=TextModelType.MULTILINGUAL_E5_SMALL.value,
|
136 |
+
description=(
|
137 |
+
"Model ID to use for the queries. Supported text models: "
|
138 |
+
"'multilingual-e5-small', 'paraphrase-multilingual-MiniLM-L12-v2', 'bge-m3'. "
|
139 |
+
"For image queries, use an ID containing 'siglip' such as 'google/siglip-base-patch16-256-multilingual'."
|
140 |
+
),
|
141 |
+
)
|
142 |
+
queries: Union[str, List[str]] = Field(
|
143 |
+
...,
|
144 |
+
description=(
|
145 |
+
"Query input(s): can be text(s) or image path(s)/URL(s). "
|
146 |
+
"If using an image model, ensure your inputs reference valid image paths or URLs."
|
147 |
+
),
|
148 |
+
)
|
149 |
+
candidates: List[str] = Field(
|
150 |
+
...,
|
151 |
+
description=(
|
152 |
+
"List of candidate texts to rank against the given queries. "
|
153 |
+
"Currently, all candidates must be text."
|
154 |
+
),
|
155 |
+
)
|
156 |
+
|
157 |
+
|
158 |
+
class EmbeddingResponse(BaseModel):
|
159 |
+
"""
|
160 |
+
Response structure for embedding creation.
|
161 |
+
"""
|
162 |
+
|
163 |
+
object: str = "list"
|
164 |
+
data: List[dict]
|
165 |
+
model: str
|
166 |
+
usage: dict
|
167 |
+
|
168 |
+
|
169 |
+
class RankResponse(BaseModel):
|
170 |
+
"""
|
171 |
+
Response structure for ranking results.
|
172 |
+
"""
|
173 |
+
|
174 |
+
probabilities: List[List[float]]
|
175 |
+
cosine_similarities: List[List[float]]
|
176 |
+
|
177 |
+
|
178 |
+
# Initialize the service with default configuration
|
179 |
+
service_config = ModelConfig()
|
180 |
+
embeddings_service = EmbeddingsService(config=service_config)
|
181 |
+
|
182 |
+
|
183 |
+
@router.post("/embeddings", response_model=EmbeddingResponse, tags=["embeddings"])
|
184 |
+
async def create_embeddings(request: EmbeddingRequest):
|
185 |
+
"""
|
186 |
+
Generate embeddings for the provided input text(s) or image(s).
|
187 |
+
|
188 |
+
Supported Model IDs for text:
|
189 |
+
- "multilingual-e5-small"
|
190 |
+
- "paraphrase-multilingual-MiniLM-L12-v2"
|
191 |
+
- "bge-m3"
|
192 |
+
|
193 |
+
Supported Model ID for image:
|
194 |
+
- "google/siglip-base-patch16-256-multilingual"
|
195 |
+
|
196 |
+
Steps:
|
197 |
+
1. Detects model type (text or image) based on the model ID.
|
198 |
+
2. Adjusts the service configuration accordingly.
|
199 |
+
3. Produces embeddings via the EmbeddingsService.
|
200 |
+
4. Returns embedding vectors along with usage information.
|
201 |
+
|
202 |
+
Raises:
|
203 |
+
HTTPException: For any errors during model detection or embedding generation.
|
204 |
+
"""
|
205 |
+
try:
|
206 |
+
modality = detect_model_type(request.model)
|
207 |
+
|
208 |
+
# Adjust global config based on the detected modality
|
209 |
+
if modality == ModelType.TEXT:
|
210 |
+
service_config.text_model_type = TextModelType(request.model)
|
211 |
+
else:
|
212 |
+
service_config.image_model_id = request.model
|
213 |
+
|
214 |
+
# Generate embeddings asynchronously
|
215 |
+
embeddings = await embeddings_service.generate_embeddings(
|
216 |
+
input_data=request.input, modality=modality.value
|
217 |
+
)
|
218 |
+
|
219 |
+
# Estimate tokens only if it's text
|
220 |
+
total_tokens = 0
|
221 |
+
if modality == ModelType.TEXT:
|
222 |
+
total_tokens = embeddings_service.estimate_tokens(request.input)
|
223 |
+
|
224 |
+
return {
|
225 |
+
"object": "list",
|
226 |
+
"data": [
|
227 |
+
{
|
228 |
+
"object": "embedding",
|
229 |
+
"index": idx,
|
230 |
+
"embedding": emb.tolist(),
|
231 |
+
}
|
232 |
+
for idx, emb in enumerate(embeddings)
|
233 |
+
],
|
234 |
+
"model": request.model,
|
235 |
+
"usage": {
|
236 |
+
"prompt_tokens": total_tokens,
|
237 |
+
"total_tokens": total_tokens,
|
238 |
+
},
|
239 |
+
}
|
240 |
+
|
241 |
+
except Exception as e:
|
242 |
+
error_msg = (
|
243 |
+
"Failed to generate embeddings. Please verify your model ID, input data, and server logs.\n"
|
244 |
+
f"Error Details: {str(e)}"
|
245 |
+
)
|
246 |
+
logger.error(error_msg)
|
247 |
+
raise HTTPException(status_code=500, detail=error_msg)
|
248 |
+
|
249 |
+
|
250 |
+
@router.post("/rank", response_model=RankResponse, tags=["rank"])
|
251 |
+
async def rank_candidates(request: RankRequest):
|
252 |
+
"""
|
253 |
+
Rank the given candidate texts against the provided queries.
|
254 |
+
|
255 |
+
Supported Model IDs for text queries:
|
256 |
+
- "multilingual-e5-small"
|
257 |
+
- "paraphrase-multilingual-MiniLM-L12-v2"
|
258 |
+
- "bge-m3"
|
259 |
+
|
260 |
+
Supported Model ID for image queries:
|
261 |
+
- "google/siglip-base-patch16-256-multilingual"
|
262 |
+
|
263 |
+
Steps:
|
264 |
+
1. Detects model type (text or image) based on the query model ID.
|
265 |
+
2. Adjusts the service configuration accordingly.
|
266 |
+
3. Generates embeddings for the queries (text or image).
|
267 |
+
4. Generates embeddings for the candidates (always text).
|
268 |
+
5. Computes cosine similarities and returns softmax-normalized probabilities.
|
269 |
+
|
270 |
+
Raises:
|
271 |
+
HTTPException: For any errors during model detection or ranking.
|
272 |
+
"""
|
273 |
+
try:
|
274 |
+
modality = detect_model_type(request.model)
|
275 |
+
|
276 |
+
# Adjust global config based on the detected modality
|
277 |
+
if modality == ModelType.TEXT:
|
278 |
+
service_config.text_model_type = TextModelType(request.model)
|
279 |
+
else:
|
280 |
+
service_config.image_model_id = request.model
|
281 |
+
|
282 |
+
# Perform the ranking
|
283 |
+
results = await embeddings_service.rank(
|
284 |
+
queries=request.queries,
|
285 |
+
candidates=request.candidates,
|
286 |
+
modality=modality.value,
|
287 |
+
)
|
288 |
+
return results
|
289 |
+
|
290 |
+
except Exception as e:
|
291 |
+
error_msg = (
|
292 |
+
"Failed to rank candidates. Please verify your model ID, input data, and server logs.\n"
|
293 |
+
f"Error Details: {str(e)}"
|
294 |
+
)
|
295 |
+
logger.error(error_msg)
|
296 |
+
raise HTTPException(status_code=500, detail=error_msg)
|
lightweight_embeddings/service.py
ADDED
@@ -0,0 +1,477 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# filename: service.py
|
2 |
+
|
3 |
+
"""
|
4 |
+
Lightweight Embeddings Service Module
|
5 |
+
|
6 |
+
This module provides a service for generating and comparing embeddings from text and images
|
7 |
+
using state-of-the-art transformer models. It supports both CPU and GPU inference.
|
8 |
+
|
9 |
+
Key Features:
|
10 |
+
- Text and image embedding generation
|
11 |
+
- Cross-modal similarity ranking
|
12 |
+
- Batch processing support
|
13 |
+
- Asynchronous API support
|
14 |
+
|
15 |
+
Supported Text Model IDs:
|
16 |
+
- "multilingual-e5-small"
|
17 |
+
- "paraphrase-multilingual-MiniLM-L12-v2"
|
18 |
+
- "bge-m3"
|
19 |
+
|
20 |
+
Supported Image Model ID (default):
|
21 |
+
- "google/siglip-base-patch16-256-multilingual"
|
22 |
+
"""
|
23 |
+
|
24 |
+
from __future__ import annotations
|
25 |
+
|
26 |
+
import logging
|
27 |
+
from enum import Enum
|
28 |
+
from typing import List, Union, Literal, Dict, Optional, NamedTuple
|
29 |
+
from dataclasses import dataclass
|
30 |
+
from pathlib import Path
|
31 |
+
from io import BytesIO
|
32 |
+
|
33 |
+
import requests
|
34 |
+
import numpy as np
|
35 |
+
import torch
|
36 |
+
from PIL import Image
|
37 |
+
from sentence_transformers import SentenceTransformer
|
38 |
+
from transformers import AutoProcessor, AutoModel
|
39 |
+
|
40 |
+
# Configure logging
|
41 |
+
logger = logging.getLogger(__name__)
|
42 |
+
logging.basicConfig(level=logging.INFO)
|
43 |
+
|
44 |
+
# Default Model IDs
|
45 |
+
TEXT_MODEL_ID = "Xenova/multilingual-e5-small"
|
46 |
+
IMAGE_MODEL_ID = "google/siglip-base-patch16-256-multilingual"
|
47 |
+
|
48 |
+
|
49 |
+
class TextModelType(str, Enum):
|
50 |
+
"""
|
51 |
+
Enumeration of supported text models.
|
52 |
+
Please ensure the ONNX files and Hugging Face model IDs are consistent
|
53 |
+
with your local or remote environment.
|
54 |
+
"""
|
55 |
+
|
56 |
+
MULTILINGUAL_E5_SMALL = "multilingual-e5-small"
|
57 |
+
PARAPHRASE_MULTILINGUAL_MINILM_L12_V2 = "paraphrase-multilingual-MiniLM-L12-v2"
|
58 |
+
BGE_M3 = "bge-m3"
|
59 |
+
|
60 |
+
|
61 |
+
class ModelInfo(NamedTuple):
|
62 |
+
"""
|
63 |
+
Simple container for mapping a given text model type
|
64 |
+
to its Hugging Face model repository and the local ONNX file path.
|
65 |
+
"""
|
66 |
+
|
67 |
+
model_id: str
|
68 |
+
onnx_file: str
|
69 |
+
|
70 |
+
|
71 |
+
@dataclass
|
72 |
+
class ModelConfig:
|
73 |
+
"""
|
74 |
+
Configuration settings for model providers, backends, and defaults.
|
75 |
+
"""
|
76 |
+
|
77 |
+
provider: str = "CPUExecutionProvider"
|
78 |
+
backend: str = "onnx"
|
79 |
+
logit_scale: float = 4.60517
|
80 |
+
text_model_type: TextModelType = TextModelType.MULTILINGUAL_E5_SMALL
|
81 |
+
image_model_id: str = IMAGE_MODEL_ID
|
82 |
+
|
83 |
+
@property
|
84 |
+
def text_model_info(self) -> ModelInfo:
|
85 |
+
"""
|
86 |
+
Retrieves the ModelInfo for the currently selected text_model_type.
|
87 |
+
"""
|
88 |
+
model_configs = {
|
89 |
+
TextModelType.MULTILINGUAL_E5_SMALL: ModelInfo(
|
90 |
+
"Xenova/multilingual-e5-small",
|
91 |
+
"onnx/model_quantized.onnx",
|
92 |
+
),
|
93 |
+
TextModelType.PARAPHRASE_MULTILINGUAL_MINILM_L12_V2: ModelInfo(
|
94 |
+
"sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
|
95 |
+
"onnx/model_quint8_avx2.onnx",
|
96 |
+
),
|
97 |
+
TextModelType.BGE_M3: ModelInfo(
|
98 |
+
"BAAI/bge-m3",
|
99 |
+
"model.onnx",
|
100 |
+
),
|
101 |
+
}
|
102 |
+
return model_configs[self.text_model_type]
|
103 |
+
|
104 |
+
|
105 |
+
class EmbeddingsService:
|
106 |
+
"""
|
107 |
+
Service for generating and comparing text/image embeddings.
|
108 |
+
|
109 |
+
This service supports multiple text models and a single image model.
|
110 |
+
It provides methods for:
|
111 |
+
- Generating text embeddings
|
112 |
+
- Generating image embeddings
|
113 |
+
- Ranking candidates by similarity
|
114 |
+
"""
|
115 |
+
|
116 |
+
def __init__(self, config: Optional[ModelConfig] = None) -> None:
|
117 |
+
"""
|
118 |
+
Initialize the EmbeddingsService.
|
119 |
+
|
120 |
+
Args:
|
121 |
+
config: Optional ModelConfig object to override default settings.
|
122 |
+
"""
|
123 |
+
# Determine whether GPU (CUDA) is available
|
124 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
125 |
+
|
126 |
+
# Use the provided config or fall back to defaults
|
127 |
+
self.config = config or ModelConfig()
|
128 |
+
|
129 |
+
# Dictionary to hold multiple text models
|
130 |
+
self.text_models: Dict[TextModelType, SentenceTransformer] = {}
|
131 |
+
|
132 |
+
# Load all models (text + image) into memory
|
133 |
+
self._load_models()
|
134 |
+
|
135 |
+
def _load_models(self) -> None:
|
136 |
+
"""
|
137 |
+
Load text and image models into memory.
|
138 |
+
|
139 |
+
This pre-loads all text models defined in the TextModelType enum
|
140 |
+
and a single image model, enabling quick switching at runtime.
|
141 |
+
"""
|
142 |
+
try:
|
143 |
+
# Load all text models
|
144 |
+
for model_type in TextModelType:
|
145 |
+
model_info = ModelConfig(text_model_type=model_type).text_model_info
|
146 |
+
logger.info(f"Loading text model: {model_info.model_id}")
|
147 |
+
|
148 |
+
self.text_models[model_type] = SentenceTransformer(
|
149 |
+
model_info.model_id,
|
150 |
+
device=self.device,
|
151 |
+
backend=self.config.backend,
|
152 |
+
model_kwargs={
|
153 |
+
"provider": self.config.provider,
|
154 |
+
"file_name": model_info.onnx_file,
|
155 |
+
},
|
156 |
+
)
|
157 |
+
|
158 |
+
logger.info(f"Loading image model: {self.config.image_model_id}")
|
159 |
+
self.image_model = AutoModel.from_pretrained(self.config.image_model_id).to(
|
160 |
+
self.device
|
161 |
+
)
|
162 |
+
self.image_processor = AutoProcessor.from_pretrained(
|
163 |
+
self.config.image_model_id
|
164 |
+
)
|
165 |
+
|
166 |
+
logger.info(f"All models loaded successfully on {self.device}.")
|
167 |
+
|
168 |
+
except Exception as e:
|
169 |
+
logger.error(
|
170 |
+
"Model loading failed. Please ensure you have valid model IDs and local files.\n"
|
171 |
+
f"Error details: {str(e)}"
|
172 |
+
)
|
173 |
+
raise RuntimeError(f"Failed to load models: {str(e)}") from e
|
174 |
+
|
175 |
+
@staticmethod
|
176 |
+
def _validate_text_input(input_text: Union[str, List[str]]) -> List[str]:
|
177 |
+
"""
|
178 |
+
Validate and standardize the input for text embeddings.
|
179 |
+
|
180 |
+
Args:
|
181 |
+
input_text: Either a single string or a list of strings.
|
182 |
+
|
183 |
+
Returns:
|
184 |
+
A list of strings to process.
|
185 |
+
|
186 |
+
Raises:
|
187 |
+
ValueError: If input_text is empty or not string-based.
|
188 |
+
"""
|
189 |
+
if isinstance(input_text, str):
|
190 |
+
return [input_text]
|
191 |
+
if not isinstance(input_text, list) or not all(
|
192 |
+
isinstance(x, str) for x in input_text
|
193 |
+
):
|
194 |
+
raise ValueError(
|
195 |
+
"Text input must be a single string or a list of strings. "
|
196 |
+
"Found a different data type instead."
|
197 |
+
)
|
198 |
+
if not input_text:
|
199 |
+
raise ValueError("Text input list cannot be empty.")
|
200 |
+
return input_text
|
201 |
+
|
202 |
+
@staticmethod
|
203 |
+
def _validate_modality(modality: str) -> None:
|
204 |
+
"""
|
205 |
+
Validate the input modality.
|
206 |
+
|
207 |
+
Args:
|
208 |
+
modality: Must be either 'text' or 'image'.
|
209 |
+
|
210 |
+
Raises:
|
211 |
+
ValueError: If modality is neither 'text' nor 'image'.
|
212 |
+
"""
|
213 |
+
if modality not in ["text", "image"]:
|
214 |
+
raise ValueError(
|
215 |
+
"Invalid modality. Please specify 'text' or 'image' for embeddings."
|
216 |
+
)
|
217 |
+
|
218 |
+
def _process_image(self, image_path: Union[str, Path]) -> torch.Tensor:
|
219 |
+
"""
|
220 |
+
Load and preprocess an image from either a local path or a URL.
|
221 |
+
|
222 |
+
Args:
|
223 |
+
image_path: Path to the local image file or a URL.
|
224 |
+
|
225 |
+
Returns:
|
226 |
+
Torch Tensor suitable for model input.
|
227 |
+
|
228 |
+
Raises:
|
229 |
+
ValueError: If the image file or URL cannot be loaded.
|
230 |
+
"""
|
231 |
+
try:
|
232 |
+
if str(image_path).startswith("http"):
|
233 |
+
response = requests.get(image_path, timeout=10)
|
234 |
+
response.raise_for_status()
|
235 |
+
image_content = BytesIO(response.content)
|
236 |
+
else:
|
237 |
+
image_content = image_path
|
238 |
+
|
239 |
+
image = Image.open(image_content).convert("RGB")
|
240 |
+
processed = self.image_processor(images=image, return_tensors="pt").to(
|
241 |
+
self.device
|
242 |
+
)
|
243 |
+
return processed
|
244 |
+
|
245 |
+
except Exception as e:
|
246 |
+
raise ValueError(
|
247 |
+
f"Failed to process image at '{image_path}'. Check the path/URL and file format.\n"
|
248 |
+
f"Details: {str(e)}"
|
249 |
+
) from e
|
250 |
+
|
251 |
+
def _generate_text_embeddings(self, texts: List[str]) -> np.ndarray:
|
252 |
+
"""
|
253 |
+
Helper method to generate text embeddings for a list of texts
|
254 |
+
using the currently configured text model.
|
255 |
+
|
256 |
+
Args:
|
257 |
+
texts: A list of text strings.
|
258 |
+
|
259 |
+
Returns:
|
260 |
+
Numpy array of shape (num_texts, embedding_dim).
|
261 |
+
|
262 |
+
Raises:
|
263 |
+
RuntimeError: If the text model fails to generate embeddings.
|
264 |
+
"""
|
265 |
+
try:
|
266 |
+
logger.info(
|
267 |
+
f"Generating embeddings for {len(texts)} text items using model: "
|
268 |
+
f"{self.config.text_model_type}"
|
269 |
+
)
|
270 |
+
# Select the preloaded text model based on the current config
|
271 |
+
model = self.text_models[self.config.text_model_type]
|
272 |
+
embeddings = model.encode(texts)
|
273 |
+
return embeddings
|
274 |
+
except Exception as e:
|
275 |
+
error_msg = (
|
276 |
+
f"Error generating text embeddings with model: {self.config.text_model_type}. "
|
277 |
+
f"Details: {str(e)}"
|
278 |
+
)
|
279 |
+
logger.error(error_msg)
|
280 |
+
raise RuntimeError(error_msg) from e
|
281 |
+
|
282 |
+
def _generate_image_embeddings(
|
283 |
+
self, input_data: Union[str, List[str]], batch_size: Optional[int]
|
284 |
+
) -> np.ndarray:
|
285 |
+
"""
|
286 |
+
Helper method to generate image embeddings.
|
287 |
+
|
288 |
+
Args:
|
289 |
+
input_data: Either a single image path/URL or a list of them.
|
290 |
+
batch_size: Batch size for processing images in chunks.
|
291 |
+
If None, process all at once.
|
292 |
+
|
293 |
+
Returns:
|
294 |
+
Numpy array of shape (num_images, embedding_dim).
|
295 |
+
|
296 |
+
Raises:
|
297 |
+
RuntimeError: If the image model fails to generate embeddings.
|
298 |
+
"""
|
299 |
+
try:
|
300 |
+
if isinstance(input_data, str):
|
301 |
+
# Single image scenario
|
302 |
+
processed = self._process_image(input_data)
|
303 |
+
with torch.no_grad():
|
304 |
+
embedding = self.image_model.get_image_features(**processed)
|
305 |
+
return embedding.cpu().numpy()
|
306 |
+
|
307 |
+
# Multiple images scenario
|
308 |
+
logger.info(f"Generating embeddings for {len(input_data)} images.")
|
309 |
+
if batch_size is None:
|
310 |
+
# Process all images at once
|
311 |
+
processed_batches = [
|
312 |
+
self._process_image(img_path) for img_path in input_data
|
313 |
+
]
|
314 |
+
with torch.no_grad():
|
315 |
+
# Concatenate all images along the batch dimension
|
316 |
+
batch_keys = processed_batches[0].keys()
|
317 |
+
concatenated = {
|
318 |
+
k: torch.cat([pb[k] for pb in processed_batches], dim=0)
|
319 |
+
for k in batch_keys
|
320 |
+
}
|
321 |
+
embedding = self.image_model.get_image_features(**concatenated)
|
322 |
+
return embedding.cpu().numpy()
|
323 |
+
|
324 |
+
# Process images in smaller batches
|
325 |
+
embeddings_list = []
|
326 |
+
for i, img_path in enumerate(input_data):
|
327 |
+
if i % batch_size == 0:
|
328 |
+
logger.debug(
|
329 |
+
f"Processing image batch {i // batch_size + 1} with size up to {batch_size}."
|
330 |
+
)
|
331 |
+
processed = self._process_image(img_path)
|
332 |
+
with torch.no_grad():
|
333 |
+
embedding = self.image_model.get_image_features(**processed)
|
334 |
+
embeddings_list.append(embedding.cpu().numpy())
|
335 |
+
|
336 |
+
return np.vstack(embeddings_list)
|
337 |
+
|
338 |
+
except Exception as e:
|
339 |
+
error_msg = (
|
340 |
+
f"Error generating image embeddings with model: {self.config.image_model_id}. "
|
341 |
+
f"Details: {str(e)}"
|
342 |
+
)
|
343 |
+
logger.error(error_msg)
|
344 |
+
raise RuntimeError(error_msg) from e
|
345 |
+
|
346 |
+
async def generate_embeddings(
|
347 |
+
self,
|
348 |
+
input_data: Union[str, List[str]],
|
349 |
+
modality: Literal["text", "image"] = "text",
|
350 |
+
batch_size: Optional[int] = None,
|
351 |
+
) -> np.ndarray:
|
352 |
+
"""
|
353 |
+
Asynchronously generate embeddings for text or image inputs.
|
354 |
+
|
355 |
+
Args:
|
356 |
+
input_data: A string or list of strings (text/image paths/URLs).
|
357 |
+
modality: "text" for text data or "image" for image data.
|
358 |
+
batch_size: Optional batch size for processing images in chunks.
|
359 |
+
|
360 |
+
Returns:
|
361 |
+
Numpy array of embeddings.
|
362 |
+
|
363 |
+
Raises:
|
364 |
+
ValueError: If the modality is invalid.
|
365 |
+
"""
|
366 |
+
self._validate_modality(modality)
|
367 |
+
|
368 |
+
if modality == "text":
|
369 |
+
texts = self._validate_text_input(input_data)
|
370 |
+
return self._generate_text_embeddings(texts)
|
371 |
+
else:
|
372 |
+
return self._generate_image_embeddings(input_data, batch_size)
|
373 |
+
|
374 |
+
async def rank(
|
375 |
+
self,
|
376 |
+
queries: Union[str, List[str]],
|
377 |
+
candidates: List[str],
|
378 |
+
modality: Literal["text", "image"] = "text",
|
379 |
+
batch_size: Optional[int] = None,
|
380 |
+
) -> Dict[str, List[List[float]]]:
|
381 |
+
"""
|
382 |
+
Rank a set of candidate texts against one or more queries using cosine similarity
|
383 |
+
and a softmax to produce probability-like scores.
|
384 |
+
|
385 |
+
Args:
|
386 |
+
queries: Query text(s) or image path(s)/URL(s).
|
387 |
+
candidates: Candidate texts to be ranked.
|
388 |
+
(Note: This implementation always treats candidates as text.)
|
389 |
+
modality: "text" for text queries or "image" for image queries.
|
390 |
+
batch_size: Batch size if images are processed in chunks.
|
391 |
+
|
392 |
+
Returns:
|
393 |
+
Dictionary containing:
|
394 |
+
- "probabilities": 2D list of softmax-normalized scores.
|
395 |
+
- "cosine_similarities": 2D list of raw cosine similarity values.
|
396 |
+
|
397 |
+
Raises:
|
398 |
+
RuntimeError: If the query or candidate embeddings fail to generate.
|
399 |
+
"""
|
400 |
+
logger.info(
|
401 |
+
f"Ranking {len(candidates)} candidates against "
|
402 |
+
f"{len(queries) if isinstance(queries, list) else 1} query item(s)."
|
403 |
+
)
|
404 |
+
|
405 |
+
# Generate embeddings for queries
|
406 |
+
query_embeds = await self.generate_embeddings(
|
407 |
+
queries, modality=modality, batch_size=batch_size
|
408 |
+
)
|
409 |
+
|
410 |
+
# Generate embeddings for candidates (always text)
|
411 |
+
candidate_embeds = await self.generate_embeddings(
|
412 |
+
candidates, modality="text", batch_size=batch_size
|
413 |
+
)
|
414 |
+
|
415 |
+
# Compute cosine similarity and scaled probabilities
|
416 |
+
cosine_sims = self.cosine_similarity(query_embeds, candidate_embeds)
|
417 |
+
logit_scale = np.exp(self.config.logit_scale)
|
418 |
+
probabilities = self.softmax(logit_scale * cosine_sims)
|
419 |
+
|
420 |
+
return {
|
421 |
+
"probabilities": probabilities.tolist(),
|
422 |
+
"cosine_similarities": cosine_sims.tolist(),
|
423 |
+
}
|
424 |
+
|
425 |
+
def estimate_tokens(self, input_data: Union[str, List[str]]) -> int:
|
426 |
+
"""
|
427 |
+
Roughly estimate the total number of tokens in the given text(s).
|
428 |
+
|
429 |
+
Args:
|
430 |
+
input_data: A string or list of strings representing text input.
|
431 |
+
|
432 |
+
Returns:
|
433 |
+
Estimated token count (int).
|
434 |
+
|
435 |
+
Raises:
|
436 |
+
ValueError: If the input is not valid text data.
|
437 |
+
"""
|
438 |
+
texts = self._validate_text_input(input_data)
|
439 |
+
# Very rough approximation: assume ~4 characters per token
|
440 |
+
total_chars = sum(len(t) for t in texts)
|
441 |
+
return max(1, round(total_chars / 4))
|
442 |
+
|
443 |
+
@staticmethod
|
444 |
+
def softmax(scores: np.ndarray) -> np.ndarray:
|
445 |
+
"""
|
446 |
+
Apply softmax along the last dimension of the scores array.
|
447 |
+
|
448 |
+
Args:
|
449 |
+
scores: Numpy array of shape (..., num_candidates).
|
450 |
+
|
451 |
+
Returns:
|
452 |
+
Numpy array of softmax-normalized values, same shape as scores.
|
453 |
+
"""
|
454 |
+
exp_scores = np.exp(scores - np.max(scores, axis=-1, keepdims=True))
|
455 |
+
return exp_scores / np.sum(exp_scores, axis=-1, keepdims=True)
|
456 |
+
|
457 |
+
@staticmethod
|
458 |
+
def cosine_similarity(
|
459 |
+
query_embeds: np.ndarray, candidate_embeds: np.ndarray
|
460 |
+
) -> np.ndarray:
|
461 |
+
"""
|
462 |
+
Compute the cosine similarity between two sets of vectors.
|
463 |
+
|
464 |
+
Args:
|
465 |
+
query_embeds: Numpy array of shape (num_queries, embed_dim).
|
466 |
+
candidate_embeds: Numpy array of shape (num_candidates, embed_dim).
|
467 |
+
|
468 |
+
Returns:
|
469 |
+
2D Numpy array of shape (num_queries, num_candidates)
|
470 |
+
containing cosine similarity scores.
|
471 |
+
"""
|
472 |
+
# Normalize embeddings
|
473 |
+
query_norm = query_embeds / np.linalg.norm(query_embeds, axis=1, keepdims=True)
|
474 |
+
candidate_norm = candidate_embeds / np.linalg.norm(
|
475 |
+
candidate_embeds, axis=1, keepdims=True
|
476 |
+
)
|
477 |
+
return np.dot(query_norm, candidate_norm.T)
|
pyproject.toml
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[tool.poetry]
|
2 |
+
name = "lightweight-embeddings"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = "Fast, lightweight, multilingual embeddings solution."
|
5 |
+
authors = ["Hieu Lam <lamhieu.vk@gmail.com>"]
|
6 |
+
readme = "README.md"
|
7 |
+
|
8 |
+
[tool.poetry.dependencies]
|
9 |
+
python = "^3.10"
|
10 |
+
|
11 |
+
|
12 |
+
[build-system]
|
13 |
+
requires = ["poetry-core"]
|
14 |
+
build-backend = "poetry.core.masonry.api"
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
fastapi
|
3 |
+
uvicorn
|
4 |
+
requests
|
5 |
+
pydantic
|
6 |
+
sentence-transformers[onnx]==3.3.1
|
7 |
+
sentencepiece==0.2.0
|
8 |
+
torch==2.4.0
|
9 |
+
transformers==4.45.0
|