language-demo / app.py
sheonhan's picture
add multi-language translation model
a7f2f12
raw
history blame
2.69 kB
import requests
import os
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
import torch
title = "Community Tab Language Detection & Translation"
description = """
When comments are created in the community tab, detect the language of the content.
Then, if the detected language is different from the user's language, display an option to translate it.
"""
TRANSLATION_API_URL = "https://api-inference.huggingface.co/models/t5-base"
LANG_ID_API_URL = "https://noe30ht5sav83xm1.us-east-1.aws.endpoints.huggingface.cloud"
ACCESS_TOKEN = os.environ.get("ACCESS_TOKEN")
ACCESS_TOKEN = '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'
headers = {"Authorization": f"Bearer {ACCESS_TOKEN}"}
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
device = 0 if torch.cuda.is_available() else -1
LANGS = ["ace_Arab", "eng_Latn", "fra_Latn", "spa_Latn"]
language_code_map = {
"English": "eng_Latn",
"French": "fra_Latn",
"German": "deu_Latn",
"Spanish": "spa_Latn",
"Korean": "kor_Hang",
"Japanese": "jpn_Jpan"
}
def translate_from_api(text):
response = requests.post(TRANSLATION_API_URL, headers=headers, json={
"inputs": text, "wait_for_model": True, "use_cache": True})
return response.json()[0]['translation_text']
def translate(text, src_lang, tgt_lang):
src_lang_code = language_code_map[src_lang]
tgt_lang_code = language_code_map[tgt_lang]
print(f"src: {src_lang_code} tgt: {tgt_lang_code}")
translation_pipeline = pipeline(
"translation", model=model, tokenizer=tokenizer, src_lang=src_lang_code, tgt_lang=tgt_lang_code, device=device)
result = translation_pipeline(text)
return result[0]['translation_text']
def query(text, src_lang, tgt_lang):
translation = translate(text, src_lang, tgt_lang)
lang_id_response = requests.post(LANG_ID_API_URL, headers=headers, json={
"inputs": text, "wait_for_model": True, "use_cache": True})
lang_id = lang_id_response.json()[0]
return [lang_id, translation]
gr.Interface(
query,
[
gr.Textbox(lines=2),
gr.Radio(["English", "French", "Korean"], value="English", label="Source Language"),
gr.Radio(["Spanish", "German", "Japanese"], value="Spanish", label="Target Language")
# gr.Radio(["English", "French", "Korean"]),
# gr.Radio(["Spanish", "German", "French"]),
],
outputs=[
gr.Textbox(lines=3, label="Detected Language"),
gr.Textbox(lines=3, label="Translation")
],
title=title,
description=description
).launch()