Spaces:
Runtime error
Runtime error
lanzhiwang
commited on
Commit
·
e90feb1
1
Parent(s):
d5bdfe9
test
Browse files- 01.ipynb +0 -0
- app-bak.py +0 -172
- app.py +8 -15
- requirements.txt +4 -5
01.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
app-bak.py
DELETED
@@ -1,172 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import os
|
3 |
-
import io
|
4 |
-
from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration
|
5 |
-
import time
|
6 |
-
import json
|
7 |
-
from typing import List
|
8 |
-
import torch
|
9 |
-
import random
|
10 |
-
import logging
|
11 |
-
|
12 |
-
if torch.cuda.is_available():
|
13 |
-
device = torch.device("cuda:0")
|
14 |
-
else:
|
15 |
-
device = torch.device("cpu")
|
16 |
-
logging.warning("GPU not found, using CPU, translation will be very slow.")
|
17 |
-
|
18 |
-
st.cache(suppress_st_warning=True, allow_output_mutation=True)
|
19 |
-
st.set_page_config(page_title="M2M100 Translator")
|
20 |
-
|
21 |
-
lang_id = {
|
22 |
-
"Afrikaans": "af",
|
23 |
-
"Amharic": "am",
|
24 |
-
"Arabic": "ar",
|
25 |
-
"Asturian": "ast",
|
26 |
-
"Azerbaijani": "az",
|
27 |
-
"Bashkir": "ba",
|
28 |
-
"Belarusian": "be",
|
29 |
-
"Bulgarian": "bg",
|
30 |
-
"Bengali": "bn",
|
31 |
-
"Breton": "br",
|
32 |
-
"Bosnian": "bs",
|
33 |
-
"Catalan": "ca",
|
34 |
-
"Cebuano": "ceb",
|
35 |
-
"Czech": "cs",
|
36 |
-
"Welsh": "cy",
|
37 |
-
"Danish": "da",
|
38 |
-
"German": "de",
|
39 |
-
"Greeek": "el",
|
40 |
-
"English": "en",
|
41 |
-
"Spanish": "es",
|
42 |
-
"Estonian": "et",
|
43 |
-
"Persian": "fa",
|
44 |
-
"Fulah": "ff",
|
45 |
-
"Finnish": "fi",
|
46 |
-
"French": "fr",
|
47 |
-
"Western Frisian": "fy",
|
48 |
-
"Irish": "ga",
|
49 |
-
"Gaelic": "gd",
|
50 |
-
"Galician": "gl",
|
51 |
-
"Gujarati": "gu",
|
52 |
-
"Hausa": "ha",
|
53 |
-
"Hebrew": "he",
|
54 |
-
"Hindi": "hi",
|
55 |
-
"Croatian": "hr",
|
56 |
-
"Haitian": "ht",
|
57 |
-
"Hungarian": "hu",
|
58 |
-
"Armenian": "hy",
|
59 |
-
"Indonesian": "id",
|
60 |
-
"Igbo": "ig",
|
61 |
-
"Iloko": "ilo",
|
62 |
-
"Icelandic": "is",
|
63 |
-
"Italian": "it",
|
64 |
-
"Japanese": "ja",
|
65 |
-
"Javanese": "jv",
|
66 |
-
"Georgian": "ka",
|
67 |
-
"Kazakh": "kk",
|
68 |
-
"Central Khmer": "km",
|
69 |
-
"Kannada": "kn",
|
70 |
-
"Korean": "ko",
|
71 |
-
"Luxembourgish": "lb",
|
72 |
-
"Ganda": "lg",
|
73 |
-
"Lingala": "ln",
|
74 |
-
"Lao": "lo",
|
75 |
-
"Lithuanian": "lt",
|
76 |
-
"Latvian": "lv",
|
77 |
-
"Malagasy": "mg",
|
78 |
-
"Macedonian": "mk",
|
79 |
-
"Malayalam": "ml",
|
80 |
-
"Mongolian": "mn",
|
81 |
-
"Marathi": "mr",
|
82 |
-
"Malay": "ms",
|
83 |
-
"Burmese": "my",
|
84 |
-
"Nepali": "ne",
|
85 |
-
"Dutch": "nl",
|
86 |
-
"Norwegian": "no",
|
87 |
-
"Northern Sotho": "ns",
|
88 |
-
"Occitan": "oc",
|
89 |
-
"Oriya": "or",
|
90 |
-
"Panjabi": "pa",
|
91 |
-
"Polish": "pl",
|
92 |
-
"Pushto": "ps",
|
93 |
-
"Portuguese": "pt",
|
94 |
-
"Romanian": "ro",
|
95 |
-
"Russian": "ru",
|
96 |
-
"Sindhi": "sd",
|
97 |
-
"Sinhala": "si",
|
98 |
-
"Slovak": "sk",
|
99 |
-
"Slovenian": "sl",
|
100 |
-
"Somali": "so",
|
101 |
-
"Albanian": "sq",
|
102 |
-
"Serbian": "sr",
|
103 |
-
"Swati": "ss",
|
104 |
-
"Sundanese": "su",
|
105 |
-
"Swedish": "sv",
|
106 |
-
"Swahili": "sw",
|
107 |
-
"Tamil": "ta",
|
108 |
-
"Thai": "th",
|
109 |
-
"Tagalog": "tl",
|
110 |
-
"Tswana": "tn",
|
111 |
-
"Turkish": "tr",
|
112 |
-
"Ukrainian": "uk",
|
113 |
-
"Urdu": "ur",
|
114 |
-
"Uzbek": "uz",
|
115 |
-
"Vietnamese": "vi",
|
116 |
-
"Wolof": "wo",
|
117 |
-
"Xhosa": "xh",
|
118 |
-
"Yiddish": "yi",
|
119 |
-
"Yoruba": "yo",
|
120 |
-
"Chinese": "zh",
|
121 |
-
"Zulu": "zu",
|
122 |
-
}
|
123 |
-
|
124 |
-
|
125 |
-
@st.cache(suppress_st_warning=True, allow_output_mutation=True)
|
126 |
-
def load_model(
|
127 |
-
pretrained_model: str = "facebook/m2m100_1.2B",
|
128 |
-
cache_dir: str = "models/",
|
129 |
-
):
|
130 |
-
tokenizer = M2M100Tokenizer.from_pretrained(pretrained_model, cache_dir=cache_dir)
|
131 |
-
model = M2M100ForConditionalGeneration.from_pretrained(
|
132 |
-
pretrained_model, cache_dir=cache_dir
|
133 |
-
).to(device)
|
134 |
-
model.eval()
|
135 |
-
return tokenizer, model
|
136 |
-
|
137 |
-
|
138 |
-
st.title("M2M100 Translator")
|
139 |
-
st.write("M2M100 is a multilingual encoder-decoder (seq-to-seq) model trained for Many-to-Many multilingual translation. It was introduced in this paper https://arxiv.org/abs/2010.11125 and first released in https://github.com/pytorch/fairseq/tree/master/examples/m2m_100 repository. The model that can directly translate between the 9,900 directions of 100 languages.\n")
|
140 |
-
|
141 |
-
st.write(" This demo uses the facebook/m2m100_1.2B model. For local inference see https://github.com/ikergarcia1996/Easy-Translate")
|
142 |
-
|
143 |
-
|
144 |
-
user_input: str = st.text_area(
|
145 |
-
"Input text",
|
146 |
-
height=200,
|
147 |
-
max_chars=5120,
|
148 |
-
)
|
149 |
-
|
150 |
-
source_lang = st.selectbox(label="Source language", options=list(lang_id.keys()))
|
151 |
-
target_lang = st.selectbox(label="Target language", options=list(lang_id.keys()))
|
152 |
-
|
153 |
-
if st.button("Run"):
|
154 |
-
time_start = time.time()
|
155 |
-
tokenizer, model = load_model()
|
156 |
-
|
157 |
-
src_lang = lang_id[source_lang]
|
158 |
-
trg_lang = lang_id[target_lang]
|
159 |
-
tokenizer.src_lang = src_lang
|
160 |
-
with torch.no_grad():
|
161 |
-
encoded_input = tokenizer(user_input, return_tensors="pt").to(device)
|
162 |
-
generated_tokens = model.generate(
|
163 |
-
**encoded_input, forced_bos_token_id=tokenizer.get_lang_id(trg_lang)
|
164 |
-
)
|
165 |
-
translated_text = tokenizer.batch_decode(
|
166 |
-
generated_tokens, skip_special_tokens=True
|
167 |
-
)[0]
|
168 |
-
|
169 |
-
time_end = time.time()
|
170 |
-
st.success(translated_text)
|
171 |
-
|
172 |
-
st.write(f"Computation time: {round((time_end-time_start),3)} segs")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -2,13 +2,13 @@ import streamlit as st
|
|
2 |
from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration
|
3 |
import time
|
4 |
import torch
|
5 |
-
|
6 |
|
7 |
if torch.cuda.is_available():
|
8 |
device = torch.device("cuda:0")
|
9 |
else:
|
10 |
device = torch.device("cpu")
|
11 |
-
|
12 |
|
13 |
st.set_page_config(page_title="M2M100 Translator")
|
14 |
|
@@ -125,25 +125,18 @@ def load_model(
|
|
125 |
model = M2M100ForConditionalGeneration.from_pretrained(
|
126 |
pretrained_model, cache_dir=cache_dir
|
127 |
).to(device)
|
128 |
-
"""
|
129 |
-
在PyTorch中,`model.eval()`是用来将模型设置为评估(evaluation)模式的方法。在深度学习中,训练和评估两个阶段的模型行为可能会有所不同。以下是`model.eval()`的主要作用:
|
130 |
-
|
131 |
-
1. **Batch Normalization和Dropout的影响:**
|
132 |
-
- 在训练阶段,`Batch Normalization`和`Dropout`等层的行为通常是不同的。在训练时,`Batch Normalization`使用批次统计信息来规范化输入,而`Dropout`层会随机丢弃一些神经元。在评估阶段,我们通常希望使用整个数据集的统计信息来规范化,而不是每个批次的统计信息,并且不再需要随机丢弃神经元。因此,通过执行`model.eval()`,模型会切换到评估模式,从而确保这些层的行为在评估时是正确的。
|
133 |
-
|
134 |
-
2. **梯度计算的关闭:**
|
135 |
-
- 在评估模式下,PyTorch会关闭自动求导(autograd)的计算图,这样可以避免不必要的梯度计算和内存消耗。在训练时,我们通常需要计算梯度以进行反向传播和参数更新,而在评估时,我们只对模型的前向传播感兴趣,因此关闭梯度计算可以提高评估的速度和减少内存使用。
|
136 |
-
|
137 |
-
总的来说,执行`model.eval()`是为了确保在评估阶段模型的行为和性能是正确的,并且可以提高评估时的效率。
|
138 |
-
"""
|
139 |
model.eval()
|
140 |
return tokenizer, model
|
141 |
|
142 |
|
143 |
st.title("M2M100 Translator")
|
144 |
-
st.write(
|
|
|
|
|
145 |
|
146 |
-
st.write(
|
|
|
|
|
147 |
|
148 |
|
149 |
user_input: str = st.text_area(
|
|
|
2 |
from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration
|
3 |
import time
|
4 |
import torch
|
5 |
+
|
6 |
|
7 |
if torch.cuda.is_available():
|
8 |
device = torch.device("cuda:0")
|
9 |
else:
|
10 |
device = torch.device("cpu")
|
11 |
+
|
12 |
|
13 |
st.set_page_config(page_title="M2M100 Translator")
|
14 |
|
|
|
125 |
model = M2M100ForConditionalGeneration.from_pretrained(
|
126 |
pretrained_model, cache_dir=cache_dir
|
127 |
).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
model.eval()
|
129 |
return tokenizer, model
|
130 |
|
131 |
|
132 |
st.title("M2M100 Translator")
|
133 |
+
st.write(
|
134 |
+
"M2M100 is a multilingual encoder-decoder (seq-to-seq) model trained for Many-to-Many multilingual translation. It was introduced in this paper https://arxiv.org/abs/2010.11125 and first released in https://github.com/pytorch/fairseq/tree/master/examples/m2m_100 repository. The model that can directly translate between the 9,900 directions of 100 languages.\n"
|
135 |
+
)
|
136 |
|
137 |
+
st.write(
|
138 |
+
" This demo uses the facebook/m2m100_1.2B model. For local inference see https://github.com/ikergarcia1996/Easy-Translate"
|
139 |
+
)
|
140 |
|
141 |
|
142 |
user_input: str = st.text_area(
|
requirements.txt
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
-
streamlit
|
2 |
-
torch
|
3 |
-
transformers
|
4 |
-
sentencepiece
|
5 |
-
# transformers[sentencepiece]
|
|
|
1 |
+
streamlit==1.29.0
|
2 |
+
torch==2.1.1
|
3 |
+
transformers==4.35.2
|
4 |
+
sentencepiece==0.1.99
|
|