Spaces:
Sleeping
Sleeping
import gradio as gr | |
from diffusers import DiffusionPipeline | |
# import torch | |
# from diffusers import DDPMScheduler, UNet2DModel | |
# from PIL import Image | |
# import numpy as np | |
# pipeline = DiffusionPipeline.from_pretrained("google/ddpm-cat-256") | |
pipeline = DiffusionPipeline.from_pretrained("google/ddpm-celebahq-256") | |
# pipeline.to("cuda") | |
def erzeuge(prompt): | |
return pipeline(prompt).images # [0] | |
with gr.Blocks() as demo: | |
with gr.Column(variant="panel"): | |
with gr.Row(variant="compact"): | |
text = gr.Textbox( | |
label="Deine Beschreibung:", | |
show_label=False, | |
max_lines=1, | |
placeholder="Bildbeschrei", | |
) | |
btn = gr.Button("erzeuge Bild") | |
gallery = gr.Gallery( | |
label="Erzeugtes Bild", show_label=False, elem_id="gallery" | |
) | |
btn.click(erzeuge, inputs=[text], outputs=[gallery]) | |
text.submit(erzeuge, inputs=[text], outputs=[gallery]) | |
if __name__ == "__main__": | |
demo.launch() | |