lanzhiwang commited on
Commit
06f915b
·
1 Parent(s): 33d25b3
Files changed (1) hide show
  1. app.py +8 -31
app.py CHANGED
@@ -1,40 +1,17 @@
1
  import gradio as gr
2
  from diffusers import DiffusionPipeline
3
- import torch
4
- from diffusers import DDPMScheduler, UNet2DModel
5
- from PIL import Image
6
- import numpy as np
7
-
8
-
9
- def erzeuge(prompt):
10
- return pipeline(prompt).images # [0]
11
-
12
-
13
- # def erzeuge_komplex(prompt):
14
- # scheduler = DDPMScheduler.from_pretrained("google/ddpm-cat-256")
15
- # model = UNet2DModel.from_pretrained("google/ddpm-cat-256").to("cuda")
16
- # scheduler.set_timesteps(50)
17
-
18
- # sample_size = model.config.sample_size
19
- # noise = torch.randn((1, 3, sample_size, sample_size)).to("cuda")
20
- # input = noise
21
-
22
- # for t in scheduler.timesteps:
23
- # with torch.no_grad():
24
- # noisy_residual = model(input, t).sample
25
- # prev_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample
26
- # input = prev_noisy_sample
27
-
28
- # image = (input / 2 + 0.5).clamp(0, 1)
29
- # image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
30
- # image = Image.fromarray((image * 255).round().astype("uint8"))
31
- # return image
32
-
33
 
34
  # pipeline = DiffusionPipeline.from_pretrained("google/ddpm-cat-256")
35
  pipeline = DiffusionPipeline.from_pretrained("google/ddpm-celebahq-256")
36
  # pipeline.to("cuda")
37
 
 
 
 
38
 
39
  with gr.Blocks() as demo:
40
  with gr.Column(variant="panel"):
@@ -43,7 +20,7 @@ with gr.Blocks() as demo:
43
  label="Deine Beschreibung:",
44
  show_label=False,
45
  max_lines=1,
46
- placeholder="Bildbeschreibung",
47
  )
48
  btn = gr.Button("erzeuge Bild")
49
 
 
1
  import gradio as gr
2
  from diffusers import DiffusionPipeline
3
+ # import torch
4
+ # from diffusers import DDPMScheduler, UNet2DModel
5
+ # from PIL import Image
6
+ # import numpy as np
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
  # pipeline = DiffusionPipeline.from_pretrained("google/ddpm-cat-256")
9
  pipeline = DiffusionPipeline.from_pretrained("google/ddpm-celebahq-256")
10
  # pipeline.to("cuda")
11
 
12
+ def erzeuge(prompt):
13
+ return pipeline(prompt).images # [0]
14
+
15
 
16
  with gr.Blocks() as demo:
17
  with gr.Column(variant="panel"):
 
20
  label="Deine Beschreibung:",
21
  show_label=False,
22
  max_lines=1,
23
+ placeholder="Bildbeschrei",
24
  )
25
  btn = gr.Button("erzeuge Bild")
26