Spaces:
Sleeping
Sleeping
Commit
·
4944e3d
1
Parent(s):
854fd59
debug 8
Browse files
app.py
CHANGED
@@ -1,62 +1,95 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from diffusers import DiffusionPipeline
|
3 |
-
import torch
|
4 |
-
from diffusers import DDPMScheduler, UNet2DModel
|
5 |
-
from PIL import Image
|
6 |
-
import numpy as np
|
7 |
|
8 |
|
9 |
-
def erzeuge(prompt):
|
10 |
-
|
11 |
|
12 |
|
13 |
-
def erzeuge_komplex(prompt):
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
|
33 |
|
34 |
-
# pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2")
|
35 |
-
# pipeline = DiffusionPipeline.from_pretrained("google/ddpm-cat-256")
|
36 |
-
pipeline = DiffusionPipeline.from_pretrained("google/ddpm-celebahq-256")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
# pipeline.to("cuda")
|
39 |
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
gallery = gr.Gallery(
|
55 |
-
label="Erzeugtes Bild", show_label=False, elem_id="gallery"
|
56 |
-
).style(columns=[2], rows=[2], object_fit="contain", height="auto")
|
57 |
-
|
58 |
-
btn.click(erzeuge, inputs=[text], outputs=[gallery])
|
59 |
-
text.submit(erzeuge, inputs=[text], outputs=[gallery])
|
60 |
-
|
61 |
-
if __name__ == "__main__":
|
62 |
-
demo.launch()
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# from diffusers import DiffusionPipeline
|
3 |
+
# import torch
|
4 |
+
# from diffusers import DDPMScheduler, UNet2DModel
|
5 |
+
# from PIL import Image
|
6 |
+
# import numpy as np
|
7 |
|
8 |
|
9 |
+
# def erzeuge(prompt):
|
10 |
+
# return pipeline(prompt).images # [0]
|
11 |
|
12 |
|
13 |
+
# def erzeuge_komplex(prompt):
|
14 |
+
# scheduler = DDPMScheduler.from_pretrained("google/ddpm-cat-256")
|
15 |
+
# model = UNet2DModel.from_pretrained("google/ddpm-cat-256").to("cuda")
|
16 |
+
# scheduler.set_timesteps(50)
|
17 |
|
18 |
+
# sample_size = model.config.sample_size
|
19 |
+
# noise = torch.randn((1, 3, sample_size, sample_size)).to("cuda")
|
20 |
+
# input = noise
|
21 |
|
22 |
+
# for t in scheduler.timesteps:
|
23 |
+
# with torch.no_grad():
|
24 |
+
# noisy_residual = model(input, t).sample
|
25 |
+
# prev_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample
|
26 |
+
# input = prev_noisy_sample
|
27 |
|
28 |
+
# image = (input / 2 + 0.5).clamp(0, 1)
|
29 |
+
# image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
|
30 |
+
# image = Image.fromarray((image * 255).round().astype("uint8"))
|
31 |
+
# return image
|
32 |
|
33 |
|
34 |
+
# # pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2")
|
35 |
+
# # pipeline = DiffusionPipeline.from_pretrained("google/ddpm-cat-256")
|
36 |
+
# pipeline = DiffusionPipeline.from_pretrained("google/ddpm-celebahq-256")
|
37 |
+
|
38 |
+
# # pipeline.to("cuda")
|
39 |
+
|
40 |
+
|
41 |
+
# with gr.Blocks() as demo:
|
42 |
+
# with gr.Column(variant="panel"):
|
43 |
+
# with gr.Row(variant="compact"):
|
44 |
+
# text = gr.Textbox(
|
45 |
+
# label="Deine Beschreibung:",
|
46 |
+
# show_label=False,
|
47 |
+
# max_lines=1,
|
48 |
+
# placeholder="Bildbeschreibung",
|
49 |
+
# ).scale(
|
50 |
+
# container=False,
|
51 |
+
# )
|
52 |
+
# btn = gr.Button("erzeuge Bild").style(full_width=False, min_width=100)
|
53 |
+
|
54 |
+
# gallery = gr.Gallery(
|
55 |
+
# label="Erzeugtes Bild", show_label=False, elem_id="gallery"
|
56 |
+
# ).style(columns=[2], rows=[2], object_fit="contain", height="auto")
|
57 |
+
|
58 |
+
# btn.click(erzeuge, inputs=[text], outputs=[gallery])
|
59 |
+
# text.submit(erzeuge, inputs=[text], outputs=[gallery])
|
60 |
+
|
61 |
+
# if __name__ == "__main__":
|
62 |
+
# demo.launch()
|
63 |
+
|
64 |
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
from diffusers import DiffusionPipeline
|
71 |
+
from diffusers import DDPMPipeline, DDIMPipeline, PNDMPipeline
|
72 |
+
import torch
|
73 |
+
import gradio as gr
|
74 |
+
import random
|
75 |
+
|
76 |
+
pipeline = DiffusionPipeline.from_pretrained("google/ddpm-celebahq-256")
|
77 |
# pipeline.to("cuda")
|
78 |
|
79 |
+
def predict(steps, seed):
|
80 |
+
generator = torch.manual_seed(seed)
|
81 |
+
for i in range(1,steps):
|
82 |
+
yield pipeline(generator=generator, num_inference_steps=i).images[0]
|
83 |
|
84 |
+
random_seed = random.randint(0, 2147483647)
|
85 |
+
gr.Interface(
|
86 |
+
predict,
|
87 |
+
inputs=[
|
88 |
+
gr.inputs.Slider(1, 100, label='Inference Steps', default=5, step=1),
|
89 |
+
gr.inputs.Slider(0, 2147483647, label='Seed', default=random_seed, step=1),
|
90 |
+
],
|
91 |
+
outputs=gr.Image(shape=[128,128], type="pil", elem_id="output_image"),
|
92 |
+
css="#output_image{width: 256px}",
|
93 |
+
title="Unconditional butterflies",
|
94 |
+
description="图片���成器",
|
95 |
+
).queue().launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|