import gradio as gr from diffusers import DiffusionPipeline # import torch # from diffusers import DDPMScheduler, UNet2DModel # from PIL import Image # import numpy as np # pipeline = DiffusionPipeline.from_pretrained("google/ddpm-cat-256") pipeline = DiffusionPipeline.from_pretrained("google/ddpm-celebahq-256") # pipeline.to("cuda") def erzeuge(prompt): return pipeline(prompt).images # [0] with gr.Blocks() as demo: with gr.Column(variant="panel"): with gr.Row(variant="compact"): text = gr.Textbox( label="Deine Beschreibung:", show_label=False, max_lines=1, placeholder="Bildbeschrei", ) btn = gr.Button("erzeuge Bild") gallery = gr.Gallery( label="Erzeugtes Bild", show_label=False, elem_id="gallery" ) btn.click(erzeuge, inputs=[text], outputs=[gallery]) text.submit(erzeuge, inputs=[text], outputs=[gallery]) if __name__ == "__main__": demo.launch()